K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2017

Để pt có 2 nghiệm phân biệt thì:

\(\Delta=\left(3m-1\right)^2-4\left(2m^2-m\right)>0\)

\(\Leftrightarrow m^2-2m+1>0\)

\(\Leftrightarrow m\ne1\)

Theo vi-et ta có: \(\hept{\begin{cases}x_1+x_2=3m-1\\x_1x_2=2m^2-m\end{cases}}\)

Ta có: \(\left|x_1-x_2\right|-2=0\)

\(\Leftrightarrow\left|x_1-x_2\right|=2\)

\(\Leftrightarrow x^2_1-2x_1x_2+x^2_2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)

\(\Leftrightarrow\left(3m-1\right)^2-4\left(2m^2-m\right)=4\)

 \(\Leftrightarrow m^2-2m-3=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=3\\m=-1\end{cases}}\) 

22 tháng 1 2017

Bài này không dùng vi_et đúng là dài thật: (hiểu "Tam giác" rồi chính thức gia nhập giải lớp 9 không giao luu nữa")

4 tháng 8 2020

\(x^2_2-2\left(m+1\right)x_2+6m-4=0\) la sao

AH
Akai Haruma
Giáo viên
4 tháng 8 2020

Nguyễn Thái Sơn: vì $x_2$ là nghiệm của PT $x^2-2(m+1)x+6m-4=0$ (phương trình ban đầu) đó bạn.

AH
Akai Haruma
Giáo viên
6 tháng 4 2018

Lời giải:

a) Ta có:

\(x^2-2(m-1)x+2m-3=0\)

\(\Leftrightarrow (x^2-1)-2(m-1)x+2(m-1)=0\)

\(\Leftrightarrow (x-1)(x+1)-2(m-1)(x-1)=0\)

\(\Leftrightarrow (x-1)[x+1-2(m-1)]=0\)

\(\Leftrightarrow (x-1)(x-2m+3)=0\)

Do đó pt có nghiệm \(x=1\)

b) Nghiệm còn lại của PT là: \(x=2m-3\)

Như vậy : \(x_1-x_2=1\Leftrightarrow \left[\begin{matrix} 1-(2m-3)=1\\ (2m-3)-1=1\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} m=\frac{3}{2}\\ m=\frac{5}{2}\end{matrix}\right.\)

1 tháng 6 2016
  • Phương trình: \(x^2-5x+3m+1=0.\)ở dạng tổng quát \(ax^2+bx+c=0\)có hệ số \(a=1;b=-5;c=3m+1\)
  • \(x_1;x_2\)là nghiệm của phương trình thì: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=5\left(a\right)\\x_1\cdot x_2=\frac{c}{a}=3m+1\left(b\right)\end{cases}}\)
  • \(\left|x_1^2-x_2^2\right|=_{ }\left|\left(x_1-x_2\right)\cdot\left(x_1+x_2\right)\right|=5\cdot\left|x_1-x_2\right|=15\Rightarrow\left|x_1-x_2\right|=3\)
  • Nếu \(x_1-x_2=3\)cùng với (a) \(x_1+x_2=5\)\(\Rightarrow x_1=4;x_2=1\)thay vào (b) \(4\cdot1=3m+1\Rightarrow m=1\)
  • Nếu \(x_1-x_2=-3\)cùng với (a) \(x_1+x_2=5\)\(\Rightarrow x_1=1;x_2=4\)thay vào (b) \(4\cdot1=3m+1\Rightarrow m=1\)
  • Vậy, với m=1 thì PT trên có 2 nghiệm phân biệt thỏa mãn điều kiện đề bài.
 
11 tháng 4 2016

Đáp số : Em học lớp 5

17 tháng 2 2019

phương trình có 2 nghiệm 1<x1<x2 <=>

\(\left\{{}\begin{matrix}\Delta>0\\a\cdot f\left(1\right)>0\\\dfrac{S}{2}>1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=9>0\\1-\left(2m-3\right)+m^2-3m>0\\2m-3>1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-5m+4>0\\m>2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\in\left(-\infty;1\right)\cup\left(4;+\infty\right)\\m>2\end{matrix}\right.\)

\(\Leftrightarrow m\in\left(4;+\infty\right)\)

4 tháng 12 2019

Áp dụng định lí viet ta có:

\(\hept{\begin{cases}x_1+x_2+x_3=5\\x_1x_2+x_2x_3+x_3x_1=2m+2\end{cases}}\)

Ta có: \(x_1^2+x_2^2+x_3^2=41\)

<=> \(\left(x_1+x_2+x_3\right)^2-2\left(x_1x_2+x_2x_3+x_3x_1\right)=41\)

<=> \(25-2\left(2m+2\right)=41\)

<=> \(m=-5.\)

4 tháng 4 2016

quá dễ

1 tháng 5 2017

mày ó

c cứt à????<3

a. vs m=-1 ,thay vào pt(1) ,ta đc :

x^2 -(-1+2)x +2.(-1) =0

<=>x^2 -x-2 =0

Có : đenta = (-1)^2 -4.(-2) =9 >0

=> căn đenta =căn 9 =3

=> X1 =2 ; X2=-1

Vậy pt (1) có tập nghiệm S={-1;2}