K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

Bài này đưa về giải hệ phương trình

\(\left\{{}\begin{matrix}a-b+4ab=1\\a^2+b^2=2\end{matrix}\right.\) với \(a,b\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b+4ab=1\left(1\right)\\\left(a-b\right)^2+2ab=2\left(2\right)\end{matrix}\right.\)

Từ pt (1) suy ra \(a-b=1-4ab\Rightarrow\left(a-b\right)^2=1+16a^2b^2-8ab\)

Do đó

\(\left(2\right)\Rightarrow1+16a^2b^2-8ab+2ab=2\)

\(\Leftrightarrow16a^2b^2-6ab-1=0\)

Xem đây là pt bậc 2 với ab tìm được \(\left[{}\begin{matrix}ab=\dfrac{1}{2}\\ab=-\dfrac{1}{8}\end{matrix}\right.\)

- TH1: \(ab=\dfrac{1}{2}\Rightarrow a-b=-1\)

\(\left\{{}\begin{matrix}a-b=-1\\ab=\dfrac{1}{2}\end{matrix}\right.\) tìm được \(\left\{{}\begin{matrix}a=\dfrac{-1+\sqrt{3}}{2}\\b=\dfrac{1+\sqrt{3}}{2}\end{matrix}\right.\) (thỏa mãn a,b>0)

Từ đó tìm x

Tương tự cho TH còn lại

5 tháng 8 2017

sao lại đặt bằng x,y mà lại suy ra a,b nhỉ =))

31 tháng 12 2022

c: =>3x^2+3y^2=39 và 3x^2-2y^2=-6

=>5y^2=45 và x^2=13-y^2

=>y^2=9 và x^2=4

=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)

d: \(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=5\\\sqrt{x}-\sqrt{y}=-\dfrac{11}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y}=1+\dfrac{11}{2}=\dfrac{13}{2}\end{matrix}\right.\)

=>x=1 và y=169/4

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4-3=1\\-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9-2=7\end{matrix}\right.\)

=>x+1=11/9 và y+4=-11/19

=>x=2/9 và y=-87/19

3 tháng 6 2019

\(a,\)\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Rightarrow2a^2+2b^2\ge a^2+2ab+b^2\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

30 tháng 9 2018

a) Đặt: \(\sqrt{x^2+1}=t\left(t\ge0\right)\), \(t^2=x^2+1\Rightarrow x^2-1=t^2-2\)

pt tương đương với \(\left(x^2-1\right)^2-12\sqrt{x^2+1}-13=0\)

=> \(\left(t^2-2\right)^2-12t-13=0\), rút gọn và phân tích pt này ta được: \(\left(t+1\right)\left(t-3\right)\left(t^2+2t+3\right)=0\)

\(t^2+2t+3=\left(t+1\right)^2+2>0\left(\forall t\right)\) nên \(\left[{}\begin{matrix}t+1=0\\t-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)

Với t = -1 thì 1 = x2 +1 <=> x=0

Với t = 3 thì 9 = x2 +1 <=> \(x=\pm2\sqrt{2}\)

Lần lượt thay các giá trị của x vừa tìm được vào pt ban đầu, nhận \(x=\pm2\sqrt{2}\) là nghiệm của pt

Vậy pt đã cho có 2 nghiêm là x =... ; x =...

b) Dùng PP chứng minh nghiệm duy nhất

x=9 là nghiệm của pt

Với x>9 thì VT > \(9+\sqrt{9-5}+\sqrt{9}+\sqrt{9^2-5.9}=20\)

Với x<9 thì VT < \(9+\sqrt{9-5}+\sqrt{9}+\sqrt{9^2-5.9}=20\)

Vậy...........

c) Vì \(\left|x-2y+1\right|\ge0\)\(\left|3x+y-7\right|\ge0\) nên

\(\left\{{}\begin{matrix}x-2y+1=0\\3x+y-7=0\end{matrix}\right.\),hệ này cho x = \(\dfrac{13}{7}\), y = \(\dfrac{10}{7}\)

Vậy.....

Có vài chỗ mk làm gọn, mong bạn hiểu cho

30 tháng 9 2018

Câu b) mk quên đặt ĐK(x >= 5) bạn nhé!!!hiha

9 tháng 7 2018

a)\(VT=y^2-2y+3=\left(y-1\right)^2+2\ge2\)

\(VP=\dfrac{6}{x^2+2x+4}=\dfrac{6}{\left(x+1\right)^2+3}\le\dfrac{6}{3}=2\)

Dấu "=" xảy ra khi: \(y=1;x=-1\)

b) Áp dụng bất đẳng thức AM-GM:

\(\sqrt{x-a}\le\dfrac{x-a+1}{2}\)

\(\sqrt{y-b}\le\dfrac{y-b+1}{2}\)

\(\sqrt{z-c}\le\dfrac{z-c+1}{2}\)

Cộng theo vế:

\(VT\le\dfrac{x-a+1+y-b+1+z-c+1}{2}=\dfrac{x+y+z}{2}=VP\)

Dấu "=" xảy ra khi: \(x=y=z=2\)

15 tháng 11 2018

2.

a/ Áp dụgn hệ quả bđt cô si,ta có :

\(A=xy+yz+zx\le\dfrac{\left(x+y+z\right)}{3}=\dfrac{a^2}{3}\)

Vậy GTLN A =a^2/3 khi x= y =z =a/3

b/Áp dụng BĐT Cô-Si dạng Engel,ta có :

\(B=\dfrac{x^2}{1}+\dfrac{y^2}{1}+\dfrac{z^2}{z}\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{a^2}{3}\)

Vậy GTNN của B = a^2/2 khi x=y=z =a/3

15 tháng 11 2018

\(B=\dfrac{3x}{1-x}+\dfrac{4\left(1-x\right)}{x}+7\ge2\sqrt{\dfrac{3x}{1-x}.\dfrac{4\left(1-x\right)}{x}}+7=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)

Vậy min B = \(\left(2+\sqrt{3}\right)^2\) khi \(\dfrac{3x}{1-x}=\dfrac{4\left(1-x\right)}{x}\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)

2 tháng 2 2016

câu a) rút x theo y thế vào A rồi áp dụng HĐT

b)rút xy thế vào B 

c)HĐT

d)rút x theo y thé vào C

rồi dùng BĐT cô-si

e)BĐT chưa dấu giá trị tuyệt đối