K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

dài quá !!!như bạn tìm cách gộp vào là được.cố lên!!!

16 tháng 2 2019

\(B=a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)

\(B=ab^2-ac^2+bc^2-a^2b+a^2c-b^2c\)

\(B=\left(ab^2-a^2b\right)-\left(ac^2-c^2b\right)+\left(a^2c-b^2c\right)\)

\(B=-ab\left(a-b\right)-c^2\left(a-b\right)+c\left(a-b\right)\left(a+b\right)\)

\(B=\left(a-b\right)\left(-ab-c^2+ac+bc\right)\)

\(B=\left(a-b\right)\left[a\left(c-b\right)-c\left(c-b\right)\right]\)

\(B=\left(a-b\right)\left(c-b\right)\left(a-c\right)\)

6 tháng 7 2016

xem lại đề

7 tháng 7 2016

đề đúng nè nhưng k biết làm -.-

17 tháng 7 2018

\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)+b^2\left(c-a\right)-c^2\left[\left(b-c\right)+\left(c-a\right)\right]\)

\(=a^2\left(b-c\right)+b^2\left(c-a\right)-c^2\left(b-c\right)-c^2\left(c-a\right)\)

\(=\left(b-c\right)\left(a^2-c^2\right)+\left(c-a\right)\left(b^2-c^2\right)\)

\(=\left(b-c\right)\left(a-c\right)\left(a+c\right)+\left(c-a\right)\left(b-c\right)\left(b+c\right)\)

\(=\left(b-c\right)\left(a-c\right)\left(a+c-b-c\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

16 tháng 12 2020

đơn giản, cứ áp dụng theo công thức là ra!!!!

14 tháng 8 2018

\(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)

\(=ab^2-ac^2+ca^2-cb^2+b\left(c^2-a^2\right)\)

\(=\left(ab^2-cb^2\right)-\left(ac^2-ca^2\right)+b\left(c-a\right)\left(c+a\right)\)

\(=b^2\left(a-c\right)-ac\left(c-a\right)+b\left(c-a\right)\left(c+a\right)\)

\(=b^2\left(a-c\right)+ac\left(a-c\right)-b\left(a-c\right)\left(c+a\right)\)

\(=\left(a-c\right)\left[b^2+ac-b\left(c+a\right)\right]\)

\(=\left(a-c\right)\left(b^2+ac-bc-ab\right)\)

\(=\left(a-c\right)\left[b\left(b-c\right)+a\left(c-b\right)\right]\)

\(=\left(a-c\right)\left[b\left(b-c\right)-a\left(b-c\right)\right]\)

\(=\left(a-c\right)\left(b-c\right)\left(b-a\right)\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Cách khác:

Ta có:
\(a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2)\)

\(=a(b^2-c^2)-b[(b^2-c^2)+(a^2-b^2)]+c(a^2-b^2)\)

\(=a(b^2-c^2)-b(b^2-c^2)-b(a^2-b^2)+c(a^2-b^2)\)

\(=(a-b)(b^2-c^2)-(b-c)(a^2-b^2)\)

\(=(a-b)(b-c)(b+c)-(b-c)(a-b)(a+b)\)

\(=(a-b)(b-c)[(b+c)-(a+b)]=(a-b)(b-c)(c-a)\)