Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(5x^2y+10xy=5xy\left(x+2\right)\)
b, \(x^2-2xy+y^2-25=\left(x-y\right)^2-5^2=\left(x-y-5\right)\left(x-y+5\right)\)
c, \(x^3-8+2x\left(x-2\right)=\left(x-2\right)\left(x^2+2x+4\right)+2x\left(x-2\right)\)
\(=\left(x-2\right)\left[\left(x^2+2x+4\right)+2x\right]=\left(x-2\right)\left(x+2\right)^2\)
d, \(x^4+x^2y^2+y^4\):<
a, = (xy-y^2) + (2x-2y) = y(x-y) + 2.(x-y) = (x-y).(y+2)
b, = (x+y)^2 - 9 = (x+y-3).(x+y+3)
a: Sửa đề: x^3-x^2+5x-5
=x^2(x-1)+5(x-1)
=(x-1)(x^2+5)
b: x^3+4x^2+x-6
=x^3-x^2+5x^2-5x+6x-6
=(x-1)(x^2+5x+6)
=(x-1)(x+2)(x+3)
c: \(=\left(x+2\right)^3+y^3\)
\(=\left(x+2+y\right)\left(x^2+4x+4-xy-2y+y^2\right)\)
x^2-2xy+y^2-9z^2
=(x-y)^2-9z^2
=(x-y)^2-(3z)^2
=(x-y-3z)(x-y+3z)
1 + 2xy - x2 - y2
= 1 - x2 + 2xy - y2
= 1 - ( x2 - 2xy + y2 )
= 1 - ( x - y )2
= ( 1 + x - y ).( 1 - x + y )
1. 2xy2 +x2y4+1 = (xy2+1)2
2. a)3x2+3x-10x-10=3x(x+1)-10(x+1)=(x+1)(3x-10)
b)2x2-5x-7=2x2+2x-7x-7=2x(x+1)-7(x+1)=(x+1)(2x-7)
Mong có thể giúp được bạn
Phân tích đa thức thành nhân tử:(em làm luôn đấy,ko ghi lại đề)
\(\left(x^3+y^3\right)-\left(x+y\right)+3xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)+3xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)\(=\left(x+y\right)\left[\left(x+y\right)^2-1^2\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
\(8x^3+12x^2+6x+1=0.\)
\(\Leftrightarrow\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3=0\)
\(\Leftrightarrow\left(2x+1\right)^3=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
\(2x^2+5x-3=0\Leftrightarrow\left(2x^2+6x\right)+\left(-x-3\right)=0\)
\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}\)
\(x^2-2x-3=0\Leftrightarrow\left(x^2-3x\right)+\left(x-3\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}.}\)
\(\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)
\(=5x-1+2\left(4+5x-20x-25x^2\right)+25x^2+40x+16\)
\(=25x^2+45x+15+8+10x-40x-50x^2\)
\(=-25x^2+15x+23\)
\(\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
\(=\left(x-y\right)^3-\left(x-y\right)^3+\left(x+y\right)^3-3x^2y-3xy^2\)
\(=\left(x+y\right)^3-3x^2y-3xy^2\)
\(=x^3+3x^2y+3xy^2+y^3-3xy^2-3x^2y\)
\(=x^3+y^3\)
5x( x - y ) + 12x - 12y
= 5x( x - y ) + 12( x - y )
= ( x - y )( 5x + 12 )
x2 + 2xy - 9 + y2
= ( x2 + 2xy + y2 ) - 9
= ( x + y )2 - 32
= ( x + y - 3 )( x + y + 3 )
\(5x\left(x-y\right)+12x-12y\)
\(=5x\left(x-y\right)+12\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+12\right)\)
\(x^2+2xy-9+y^2\)
\(=\left(x^2+2xy+y^2\right)-9\)
\(=\left(x+y\right)^2-3^2\)
\(=\left(x+y-3\right)\left(x+y+3\right)\)