Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A(x) = -4x5 - x3 + 4x2 + 5x + 9 + 4x5 - 6x2 - 2
= - x3 - 2x2 + 5x + 7
B(x) = -3x4 - 2x3 + 10x2 - 8x + 5x3 - 7 - 2x3 + 8x
= - 3x4 + x3 + 10x2 - 7
b) P(x) = A(x) + B(x)
= - x3 - 2x2 + 5x + 7 - 3x4 + x3 + 10x2 - 7
= - 3x4 + 8x2 + 5x
Q(x) = A(x) - B(x)
= - x3 - 2x2 + 5x + 7 - (- 3x4 + x3 + 10x2 - 7)
= - x3 - 2x2 + 5x + 7 + 3x4 - x3 - 10x2 + 7
= 3x4 - 2x3 - 12x2 + 5x + 14
c) Thế x = -1 vào đa thức P(x), ta có:
P(-1) = - 3.(-1)4 + 8.(-1)2 + 5.(-1) = -3 + 8 + (-5) = 0
Vậy x = -1 là nghiệm của đa thức P(x).
\(1)-4x\left(x-5\right)-2x\left(8-2x\right)=-3\)
\(\Rightarrow-4x^2-\left(-20x\right)-16x+4x^2=-3\)
\(\Rightarrow20x-14x=-3\)
\(\Rightarrow6x=-3\)
\(\Rightarrow x=-\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)
\(2)\) Theo bài ra, ta có: \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
\(\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)
\(\Rightarrow\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)
\(\Rightarrow\sqrt[3]{\left(\dfrac{x}{2}\right)^3}=\sqrt[3]{\left(\dfrac{y}{4}\right)^3}=\sqrt[3]{\left(\dfrac{z}{6}\right)^3}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
\(\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{4}\right)^2=\left(\dfrac{z}{6}\right)^2\)
\(\Rightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
Suy ra:
\(+)\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}.4=1=\left(\pm1\right)^2\Rightarrow x=\pm1\)
\(+)\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{16}.4=\dfrac{1}{4}=\left(\pm\dfrac{1}{2}\right)^2\Rightarrow y=\pm\dfrac{1}{2}\)
\(+)\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{36}.4=\dfrac{1}{9}=\left(\pm\dfrac{1}{3}\right)^2\Rightarrow z=\pm\dfrac{1}{3}\)
Vậy \(\left(x;y;z\right)\in\left\{\left(-1;-\dfrac{1}{2};-\dfrac{1}{3}\right);\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\right\}\)
a)M(x)=-x4+(2x3-4x3)+(4x2-4x2)-2x-5
=-x4-2x3-2x-5
Bậc của đa thức:4
Hệ số cao nhất:-1
Hệ số tự do:-5
N(x)=(-x4+2x4)+2x3-x2+3x+5
=x4+2x3-x2+3x+5
Bậc của đa thức:4
Hệ số cao nhất:1
Hệ số tự do:5
b)Thay x=-1 vào N(x) ta có:
(-1)4+2.(-1)3-(-1)2+3.(-1)+5
=1-2-1-3+5
=0
c)P(x)-M(x)=N(x)
=>P(x)=N(x)+M(x)=(x4+2x3-x2+3x+5)+(-x4-2x3-2x-5)
=(x4-x4)+(2x3-2x3)-x2+(3x-2x)+(5-5)
=-x2+x
d)P(x)=-x2+x=-x(x-1)
Cho P(x)=0=>-x(x-1)=0
<=>-x=0 hoặc x-1=0
<=>x=0 hoặc x=1
Vậy...
P(x) - Q(x) = (2x2 + 2x - 4 ) - (-x - x3 + 2x2 - 4)
= 2x2 + 2x - 4 + x + x3 - 2x2 + 4
= (2x2 - 2x2) + (2x + x) + (-4 + 4) + x3
= 3x + x3
Q(x) - P(x) = (-x - x3 + 2x2 - 4) - (2x2 + 2x - 4)
= -x - x3 + 2x2 - 4 - 2x2 - 2x + 4
= (-x - 2x) - x3 + (2x2 - 2x2) + (-4 + 4)
= -3x - x3
Ta có : \(P\left(x\right)-Q\left(x\right)=\left(2x^2+2x-4\right)-\left(-x-x^3+2x^2-4\right)\)
\(=2x^2+2x-4+x+x^3-2x^2+4=3x+x^3\)
\(Q\left(x\right)-P\left(x\right)=\left(-x-x^3+2x^2-4\right)-\left(2x^2+2x-4\right)\)
\(=-x-x^3+2x^2-4-2x^2-2x+4=-3x-x^3\)