K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

giải luôn à, tiện thật

Cách dùng dấu "và" : \(\hept{\begin{cases}\\\end{cases}}\)và dấu "hoặc":\(\orbr{\begin{cases}\\\end{cases}}\)*Dấu "và": \(\hept{\begin{cases}\\\end{cases}}\)Định nghĩa : \(\left|x\right|=\hept{\begin{cases}-x\left(x< 0\right)\\x\left(x\ge0\right)\end{cases}}\)Đó chỉ là định nghĩa thôi nhưng áp dụng thì lại khác :Ví dụ : \(\left|x\right|=5\)thì \(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)chứ không thể...
Đọc tiếp

Cách dùng dấu "và" : \(\hept{\begin{cases}\\\end{cases}}\)và dấu "hoặc":\(\orbr{\begin{cases}\\\end{cases}}\)

*Dấu "và": \(\hept{\begin{cases}\\\end{cases}}\)

Định nghĩa : \(\left|x\right|=\hept{\begin{cases}-x\left(x< 0\right)\\x\left(x\ge0\right)\end{cases}}\)

Đó chỉ là định nghĩa thôi nhưng áp dụng thì lại khác :

Ví dụ : \(\left|x\right|=5\)thì \(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)chứ không thể là \(\hept{\begin{cases}x=5\\x=-5\end{cases}}\)

Lí do : Vì x không thể nhận đồng thời 2 giá trị 5 và -5

Nói tóm lại là : Dấu "và" là để biểu thị còn dấu "hoặc" là để chia trường hợp

Ví dụ khác :

Giải phương trình : \(\left|2x+1\right|=5\)

Ta có : \(\left|2x+1\right|=5\)

   \(\Leftrightarrow\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=4\\2x=-6\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Vậy x = 2 HOẶC x = -3 

Trong trường hợp này không thể dùng dấu "và" vì nếu dùng dấu "và" thì x nhận đồng thời cả 2 giá trị 2 và -3. Điều đó là vô lí !

Nếu muốn các bạn có thể hỏi trực tiếp giáo viên! 

P/: mình từng thấy một vụ cãi vã về việc dùng dấu "và" và dấu "hoặc" nên mình làm bài này để giúp mọi người hiểu rõ hơn !

26
13 tháng 12 2018

và uyên đz đã đúng :3

13 tháng 12 2018

Theo mình,nó đã là định nghĩa của sgk,của nhiều nước trên thế giới thì chúng ta có thể viết 

Nếu |x| = 5 thì \(\hept{\begin{cases}x=5\\x=-5\end{cases}}\) (ở đây nó vẫn biểu thị cho trường hợp nhé) nhưng không được viết \(x=\hept{\begin{cases}5\\-5\end{cases}}\) vì x không đồng thời thỏa mãn cả hai trường hợp. Mình từng tham gia vụ cãi về việc dùng dấu nên xin nêu ý kiến.Còn lại tùy bạn,tùy người chấm thi.Như có trường mình thì dùng dấu nào chả được? Vả lại khuyến khích dùng dấu của định nghĩa là đàng khác!

4 tháng 10 2018

\(x\left(x-y\right)-y\left(x-y\right)=\frac{3}{10}-\left(-\frac{3}{50}\right)\)

\(\Leftrightarrow\left(x-y\right)^2=\frac{9}{25}\)

\(\Rightarrow\orbr{\begin{cases}x-y=\frac{3}{5}\\x-y=-\frac{3}{5}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{5}+y\\x=y-\frac{3}{5}\end{cases}}}\)

Với \(x=\frac{3}{5}+y\Rightarrow x\left(x-y\right)=\left(\frac{3}{5}+y\right).\frac{3}{5}=\frac{3}{10}\)

\(\Rightarrow y=-\frac{1}{10}\)

\(\Rightarrow x=\frac{1}{2}\)

Với \(x=y-\frac{3}{5}\Rightarrow x\left(x-y\right)=x\left(y-\frac{3}{5}-y\right)=-\frac{3}{50}\)

\(\Leftrightarrow x.\left(-\frac{3}{5}\right)=-\frac{3}{50}\Rightarrow x=\frac{1}{10}\)

\(\Rightarrow y=\frac{7}{10}\)

Vậy \(x=\frac{1}{2};y=-\frac{1}{10}\)hoặc \(x=\frac{1}{10};y=\frac{7}{10}\)

12 tháng 1 2018

cái j z

12 tháng 1 2018

không biết cái chi mới hỏi mày đó

bây giờ mới thấy bài này nhảm v~

17 tháng 7 2016

hjjj

e nek

19 tháng 3 2017

r2535

17 tháng 7 2016

cả 2 cách đều đúng, nói như vậy phải gộp 2 cái lại

bạn làm theo cách một chúng ta dc:

\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

Đến đây ko phải chỉ có 6x=12 mà phải nghĩ đến nếu 2x+3y-1=0 thì x = bao nhiêu cũng  đúng v~

Khi 2x+3y-1=0 thì nó thành cách 2 đấy

17 tháng 7 2016

Bây giờ mới thấy bài này nhảm quá. Có nhiều x, y mà. Tìm bằng thánh. Gặp bài này nhiều rồi mà giờ mới để ý đó.

v~ thiệt

10 tháng 10 2017

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{-7}=\frac{y}{4}=\frac{2x}{2.\left(-7\right)}=\frac{3y}{3.4}=\frac{2x-3y}{\left(-14\right)-12}=\frac{-78}{-26}=3\)

\(\frac{x}{-7}=3\Rightarrow x=3.\left(-7\right)=-21\)

\(\frac{y}{4}=3\Rightarrow y=3.4=12\)

Vậy x=-21 và y=12

b) mình ngĩ đề là -2x+7y-3z mới đúng

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{-3}=\frac{y}{4}=\frac{z}{5}=\frac{-2x}{-2.\left(-3\right)}=\frac{7y}{7.4}=\frac{3z}{3.5}=\frac{-2x+7y-3z}{6+28-15}=\frac{171}{19}=9\)

\(\frac{x}{-3}=9\Rightarrow x=9.\left(-3\right)=-27\)

\(\frac{y}{4}=9\Rightarrow y=9.4=36\)

\(\frac{z}{5}=9\Rightarrow y=9.5=45\)

Vậy x=-27 ; y=36 và z=45

c) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{5}=\frac{-3x}{-3.4}=\frac{2y}{2.\left(-5\right)}=\frac{-3x+2y}{\left(-12\right)+\left(-10\right)}=\frac{55}{-22}=\frac{-5}{2}\)

\(\frac{x}{4}=\frac{-5}{2}\Rightarrow x=\frac{-5}{2}.4=-10\)

\(\frac{y}{-5}=\frac{-5}{2}\Rightarrow y=\frac{-5}{2}.\left(-5\right)=\frac{25}{2}\)

Vậy x=-10 và y=25/2