Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : |x - 2| ; |x - 5| ; |x - 18| ≥0∀x∈R≥0∀x∈R
=> |x - 2| + |x - 5| + |x - 18| ≥0∀x∈R≥0∀x∈R
=> D có giá trị nhỏ nhất khi x = 2;5;18
Mà x ko thể đồng thời nhận 3 giá trị
Nên GTNN của D là : 16 khi x = 5 ok nha bạn
x^2/x-1 = x^2-4x+4/x-1 + 4 = (x-2)^1/x-1 + 4 >= 4
Dấu "=" xảy ra <=> x-2 = 0 <=> x = 2 (tm)
Vậy GTNN của x^2/x-1 = 4 <=> x= 2
k mk nha
a) \(x^2-2xy+2y^2+2y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
b) \(4x^2-12x-y^2+2y+8\) (đã sửa đề)
\(=4\left(x^2-3x+\frac{9}{4}\right)-\left(y^2-2y+1\right)\)
\(=\left[2\left(x-\frac{3}{2}\right)\right]^2-\left(y-1\right)^2\)
c) \(z^2-6z+5-t^2-4t\)
\(=\left(z^2-6z+9\right)-\left(t^2+4t+4\right)\)
\(=\left(z-3\right)^2-\left(t+2\right)^2\)
\(B=-3x^2-12x-8=-3\left(x^2+4x+4\right)+4=-3\left(x+2\right)^2+4\le4\)
Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).
\(x^3-3x+1=\frac{1}{2}x^2\left(2x-1\right)+\frac{1}{4}x\left(2x-1\right)-\frac{11}{8}\left(2x-1\right)-\frac{3}{8}\)
\(=\left(2x-1\right)\left(\frac{1}{2}x^2+\frac{1}{4}x-\frac{11}{8}\right)-\frac{3}{8}\)