Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có BC = BD + DC = 15 + 20 = 35cm
AB / AC = BD / DC = 15 / 20 = 3/4
<=> AB = 3/4.AC
Áp dụng Pytago :
AB² + AC² = 35²
<=> (3/4AC)² + AC² = 35²
<=> 0,5625AC² + AC² = 35²
<=> 1,5625AC² = 35²
<=> AC² = 35² / 1,5625 = 784
<=> AC = 28 cm
=> AB = 3/4 . 28 =21 cm
Cos C = 21 / 35 = 3/5
AD² = AC² + DC² - 2.AC.DC.cosC
<=> AD² = 28² + 20² - 2.28.20.3/5
<=> AD = 16√2 cm = 22,63 cm
quá dễ dàng
động não đi
a) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
b) \(=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
c) \(=\sqrt{\left(2\sqrt{2}+3\right)^2}=2\sqrt{2}+3\)
d) \(=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
e) \(=\sqrt{\left(4-\sqrt{6}\right)^2}=4-\sqrt{6}\)
f) \(=\sqrt{\left(3+\sqrt{7}\right)^2}=3+\sqrt{7}\)
l) \(=\sqrt{\left(\sqrt{2}-\dfrac{1}{2}\right)^2}=\sqrt{2}-\dfrac{1}{2}\)
m) \(=\sqrt{\left(2\sqrt{2}+\dfrac{1}{4}\right)^2}=2\sqrt{2}+\dfrac{1}{4}\)
2:
1+cot^2a=1/sin^2a
=>1/sin^2a=1681/81
=>sin^2a=81/1681
=>sin a=9/41
=>cosa=40/41
tan a=1:40/9=9/40
đề như thế này à \(\dfrac{\sqrt{27-3\sqrt{2}+2\sqrt{6}}}{3\sqrt{3}}\)
Gọi phương trình đường thẳng đi qua 2 điểm \(A,B\) là \(y=mx+n\)
Do \(\left\{{}\begin{matrix}A\in AB\\B\in AB\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3=-m+n\\-3=2m+n\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=-2\\n=1\end{matrix}\right.\)
\(\Rightarrow AB:y=-2x+1\)
Do \(C\left(a,b\right)\in\left(d\right):y=2x-3\Rightarrow b=2a-3\) (1)
Mặt khác, để \(A,B,C\) thẳng hàng thì \(C\in AB\Rightarrow b=-2a+1\) (2)
Từ (1) và (2) ta có \(a=1,b=-1\) nên \(a+b=0\)
Do C thuộc d nên: \(b=2a-3\) \(\Rightarrow C\left(a;2a-3\right)\)
Gọi phương trình đường thẳng d1 qua 2 điểm A; B có dạng:
\(y=mx+n\)
A; B thuộc d1 nên: \(\left\{{}\begin{matrix}3=-m+n\\-3=2m+n\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-2\\n=1\end{matrix}\right.\)
\(\Rightarrow\) Phương trình d1: \(y=-2x+1\)
A;B;C thẳng hàng khi và chỉ khi C thuộc d1
\(\Rightarrow2a-3=-2a+1\)
\(\Rightarrow4a=4\Rightarrow a=1\Rightarrow b=-1\)
\(\Rightarrow a+b=0\)
2: Thay x=1 và y=-4 vào (d), ta được:
2m+2=-4
hay m=-3
\(1-\sin^2\alpha=\sin^2\alpha+\cos^2\alpha-\sin^2\alpha=\cos^2\alpha\)
\(\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)=1-\cos^2\alpha=\sin^2\alpha+\cos^2\alpha-\cos^2a=\sin^2a\)
\(1+\sin^2a+\cos^2\alpha=1+1=2\)
\(\sin\alpha-\sin\alpha\cdot\cos^2\alpha=\sin\alpha\left(1-\cos^2a\right)=\sin\alpha\left(\sin^2\alpha+\cos^2a-\cos^2a\right)=\sin^3\alpha\)
\(\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha\cdot\cos^2\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1^2=1\)
1/ \(1-\sin^2\alpha=\cos^2\alpha\)
2/ \(\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)=1-\cos^2\alpha=\sin^2\alpha\)
3/ \(1+\sin^2\alpha+\cos^2\alpha=1+1=2\)
4/ \(\sin\alpha\left(1-\cos^2\alpha\right)=\sin\alpha.\sin^2\alpha=\sin^3\alpha\)
5/ \(=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)