K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 7 2021

Min của biểu thức này không tồn tại (nó chỉ tồn tại khi tam giác ABC là 1 tam giác suy biến nghĩa là 1 cạnh bằng 0)

27 tháng 7 2021

Dạ thầy ạ.

26 tháng 10 2019

a/ \(A=\frac{1}{5+2\sqrt{6-x^2}}\)

Có: \(-x^2\le0\)với mọi x

=> \(6-x^2\le6\)

=> \(0\le\sqrt{6-x^2}\le\sqrt{6}\)

=> \(5\le5+2\sqrt{6-x^2}\le5+2\sqrt{6}\)

=> \(\frac{1}{5+2\sqrt{6}}\le\frac{1}{5+2\sqrt{6-x^2}}\le\frac{1}{5}\); với mọi x

=> \(\hept{\begin{cases}maxA=\frac{1}{5}\Leftrightarrow\sqrt{6-x^2}=0\Leftrightarrow x=\pm\sqrt{6}\\minA=\frac{1}{5+2\sqrt{6}}\Leftrightarrow\sqrt{6-x^2}=\sqrt{6}\Leftrightarrow x=0\end{cases}}\)

Vậy:...

b/ \(B=\sqrt{-x^2+2x+4}=\sqrt{-\left(x-1\right)^2+5}\)

Có: \(-\left(x-1\right)^2\le0\)với mọi x

=> \(-\left(x-1\right)^2+5\le5\)

=> \(0\le\sqrt{-\left(x-1\right)^2+5}\le\sqrt{5}\)

=> \(0\le B\le\sqrt{5}\)với mọi x

=> \(\hept{\begin{cases}maxB=\sqrt{5}\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x=1\\minB=0\Leftrightarrow\left(x-1\right)^2=5\Leftrightarrow x=\pm\sqrt{5}+1\end{cases}}\)

Vậy:...

26 tháng 10 2019

a)Ta có:

\(0\le2\sqrt{6-x^2}\le2\sqrt{6}\)

\(\Leftrightarrow\frac{1}{5}\ge\frac{1}{5+2\sqrt{6-x^2}}\ge\frac{1}{5+2\sqrt{6}}=5-2\sqrt{6}\)

\(\Rightarrow\hept{\begin{cases}MAX\left(A\right)=\frac{1}{5}\\MIN\left(A\right)=5-2\sqrt{6}\end{cases}}\)Dấu "=" xảy ra khi \(\hept{\begin{cases}x=0\left(MIN\right)\\x=\sqrt{6}\left(MAX\right)\end{cases}}\)

8 tháng 6 2021

Nãy ghi nhầm =="

a)Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

Thay `m=1` vào pt ta có:

`x^2-2x-2-1=0`

`<=>x^2-2x-3=0`

`a-b+c=0`

`=>x_1=-1,x_2=3`

`=>y_1=1,y_2=9`

`=>(-1,1),(3,9)`

Vậy tọa độ gđ (d) và (P) là `(-1,1)` và `(3,9)`

b)

Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

PT có 2 nghiệm pb

`<=>Delta'>0`

`<=>1+2m+1>0`

`<=>2m> -2`

`<=>m> 01`

Áp dụng hệ thức vi-ét:`x_1+x_2=2,x_1.x_2=-2m-1`

Theo `(P):y=x^2=>y_1=x_1^2,y_2=x_2^2`

`=>x_1^2+x_2^2=14`

`<=>(x_1+x_2)^2-2x_1.x_2=14`

`<=>4-2(-2m-1)=14`

`<=>4+2(2m+1)=14`

`<=>2(2m+1)=10`

`<=>2m+1=5`

`<=>2m=4`

`<=>m=2(tm)`

Vậy `m=2` thì ....

28 tháng 5 2021

a) Có \(\widehat{OAM}=90^0\) => Tam giác \(OAM\) nội tiếp đường tròn đường kính OM 

=> O,A,M cùng thuộc đường tròn đường kính OM (*)

Có \(\widehat{OBM}=90^0\) => Tam giác \(OBM\) nội tiếp đường tròn đường kính OM 

=> O,B,M cùng thuộc đường tròn đường kính OM (2*)

Do N là trung điểm của PQ => \(ON\perp PQ\)( Vì trong một đt, đường kính đi qua trung điểm của một dây ko đi qua tâm thì vuông góc với dây ấy)

=> \(\widehat{ONM}=90^0\) => Tam giác \(ONM\) nội tiếp đường tròn đường kính OM 

=> O,N,M cùng thuộc đt đường kính OM (3*)

Từ (*) (2*) (3*) => O,M,N,A,B cùng thuộc đt đk OM hay đt bán kính \(\dfrac{OM}{2}\)

b) Có AM//PS (cùng vuông góc với OA)

Gọi E là gđ của PS với (O) => \(sđ\stackrel\frown{AE}=sđ\stackrel\frown{AP}\)

Có \(\widehat{PRB}=\dfrac{1}{2}\left(sđ\stackrel\frown{AE}+sđ\stackrel\frown{PB}\right)\)\(=\dfrac{1}{2}\left(sđ\stackrel\frown{AP}+sđ\stackrel\frown{PB}\right)=\dfrac{1}{2}sđ\stackrel\frown{AB}\)

=> \(\widehat{PRB}=\widehat{MAB}=\dfrac{1}{2}sđ\stackrel\frown{AB}\)

Có BNAM nội tiếp => \(\widehat{MAB}=\widehat{MNB}\)

\(\Rightarrow\widehat{PRB}=\widehat{MNP}\) => PRNB nội tiếp

\(\Rightarrow\widehat{BRN}=\widehat{BPN}\) mà \(\widehat{BPN}=\widehat{BAQ}=\dfrac{1}{2}sđ\stackrel\frown{BQ}\)

\(\Rightarrow\widehat{BRN}=\widehat{BAQ}\) => RN//AQ hay RN // SQ mà N la trung điểm của PQ

=> RN là đường TB của tam giác PSQ

=> R là trung điểm của PS <=> PR=RS

1 tháng 9 2021

a) \(Q=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\right):\dfrac{3\sqrt{x}-x}{x+4\sqrt{x}+4}\left(đk:x\ge0,x\ne4\right)\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)-2\sqrt{x}\left(\sqrt{x}-2\right)-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{3\sqrt{x}-x}\)

\(=\dfrac{\left(x+3\sqrt{x}+2-2x+4\sqrt{x}-5\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(3\sqrt{x}-x\right)}\)

\(=\dfrac{\left(-x+2\sqrt{x}\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(3\sqrt{x}-x\right)}=\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{-\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

b) \(Q=2\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-3}=2\Leftrightarrow2\sqrt{x}-6=\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}=8\Leftrightarrow x=64\)

c) \(Q=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+2>0\\\sqrt{x}-3< 0\end{matrix}\right.\)(do \(\sqrt{x}+2>\sqrt{x}-3\))

\(\Leftrightarrow-2< \sqrt{x}< 3\)

\(\Leftrightarrow0\le x< 9\) và \(x\ne4\)

a: Ta có: \(Q=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\right):\dfrac{3\sqrt{x}-x}{x+4\sqrt{x}+4}\)

\(=\dfrac{x+3\sqrt{x}+2-2x+4\sqrt{x}-5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{-\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-x+2\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+2}{-\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

b: Để Q=2 thì \(\sqrt{x}+2=2\sqrt{x}-6\)

\(\Leftrightarrow\sqrt{x}=8\)

hay x=64