Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
\(\left(a-b\right)^3-\left(a-b\right)^3\)
\(=\left(a-b\right)^2\left(a-b-a+b\right)\)
\(\left(a^2+2ab+b^2\right)+\left(a+b\right)^3\)
\(=\left(a+b\right)^2+\left(a+b\right)^3\)
\(=\left(a+b\right)^2\left(a+b+1\right)\)
......giải ....
a. \(\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
b ...ko cần làm .. =0
c.. =(a+b)^2 +(a+b)^3=(a+b)[ (a+b)+ (a+b)^2 ]
... check mk đó .. The end•••
\(\Leftrightarrow4\left(x^2+x-2\right)-\left(4x^2+11x-3\right)=2x-2\)
\(\Leftrightarrow4x^2+4x-8-4x^2-11x+3=2x-2\)
=>-7x-5=2x-2
=>-9x=3
hay x=-1/3
Thực hiện nhân tung ra ta có .
a.\(x^3+3x^2+3x+1-\left(x^3-3x+2\right)-3\left(x^2-9\right)=5\)
\(\Leftrightarrow6x+1-2+27=5\Leftrightarrow6x=-21\Leftrightarrow x=-\frac{7}{2}\)
b.\(x^3+3x^2-4+x^3-3x+2-\left(x^3+3x^2+3x+1\right)=4\)
\(\Rightarrow x^3=7\Leftrightarrow x=\sqrt[3]{7}\)
c.\(x^3+3x^2+3x+1+x^3-3x^2+3x-1=x^3+6x^2+12x+8+x^3-6x^2+12x-8\)
\(\Leftrightarrow2x^3+6x=2x^3+24x\Leftrightarrow18x=0\Leftrightarrow x=0\)
a) \(\left(x+1\right)^3-\left(x+2\right)\left(x-1\right)^2-3\left(x-3\right)\left(x+3\right)\)
\(=\left(x^3+3x^2+3x+1\right)-\left(x+1\right)\left(x^2-2x+1\right)-3\left(x^2-9\right)\)
\(=x^3+3x^2+3x+1-\left(x^3-x^2-x+1\right)-\left(3x^2-27\right)\)
\(=x^3+3x^2+3x+1-x^3+x^2+x+1-3x^2+27\)
\(=6x+26\)
\(2x-1\left(x+2\right)-3\left(x+2\right)=0\)
\(\Rightarrow\left(2x-4\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-4=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)
(2x-1)(x+2)-3(x+2)=0
<=>2x2+3x-2-3x-6=0
<=>2x2-8=0
<=>2(x2-4)=0
<=>x2-4=0
<=>(x+2)(x-2)=0
=>\(\orbr{\begin{cases}x+2=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}}\)
Vậy...
\(M=x^2-2xy+4y^2+12xy+22\)
\(M=\left(x^2-2xy+y^2\right)+\left(3y^2+12y+12\right)+10\)
\(M=\left(x-y\right)^2+3\left(x+2\right)^2+10\ge10\forall x;y\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=-2\)
( Chỗ \(M=\left(x-y\right)^2+3\left(x+2\right)^2+10\ge10\forall x;y\) bạn phân tích từng cái đã nhá, mình làm tắt )
c)\(\frac{a^2}{b^2}+\frac{b^2}{a^2}+4\ge3\cdot\left(\frac{a}{b}+\frac{b}{a}\right)\)
Thế : \(\frac{\left(a-b\right)^2\left(a^2-ab+b^2\right)}{a^2b^2}\ge0\)
\(\Leftrightarrow\frac{\left(b-a\right)^2\left(a^2-ab+b^2\right)}{a^2b^2}\ge0\)
\(\Leftrightarrow\frac{a^4+4a^2b^2+b^4}{a^2b^2}\ge\frac{3\left(a^2+b^2\right)}{ab}\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}+4\ge\frac{3a}{b}+\frac{3b}{a}\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}+4>=3\cdot\left(\frac{a}{b}+\frac{b}{a}\right)\)
Bạn ơi tách từng câu ra chứ :)
bạn cứ lm đi đc bao nhiêu cũng đc ạ