K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DT
1
DT
0
LX
0
KN
11 tháng 10 2020
Đặt \(a=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\Rightarrow a^2=8+2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}=8+6=14\Rightarrow a=\sqrt{14}\)(Dễ thấy a > 0)
TH
17 tháng 10 2017
1a + 2a + 3a:5a
= 3a + \(\frac{3}{5}\)a
= 3\(\frac{3}{5}\)a = \(\frac{18}{5}\)a
K nha
HA
2
AH
Akai Haruma
Giáo viên
7 tháng 1 2019
Theo mình hiểu thì đường thẳng $x=2$ được tạo nên từ tập hợp các điểm có hoành độ $x=2$ và tung độ tùy ý. Khoảng cách từ các điểm này đến trục tung luôn không đổi (bằng 2) nên đường thẳng tạo bởi các điểm đó song song với trục tung.
ĐKXĐ : x > 1
+) Với y < 2/3
hpt trở thành \(\hept{\begin{cases}\frac{2}{\sqrt{x-1}}-\left(3y-2\right)=3\\3\left(3y-2\right)+\frac{1}{\sqrt{x-1}}=-2\end{cases}}\)(1)
Đặt \(\hept{\begin{cases}\frac{1}{\sqrt{x-1}}=a\\3y-2=b\end{cases}}\left(a>0\right)\)(1) trở thành \(\hept{\begin{cases}2a-b=3\\a+3b=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\left(tm\right)\\b=-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{\sqrt{x-1}}=1\\3y-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\left(tm\right)\\y=\frac{1}{3}\end{cases}}\)
+) Với y ≥ 2/3
hpt trở thành \(\hept{\begin{cases}\frac{2}{\sqrt{x-1}}+\left(3y-2\right)=3\\-3\left(3y-2\right)+\frac{1}{\sqrt{x-1}}=-2\end{cases}}\)(2)
Đặt \(\hept{\begin{cases}\frac{1}{\sqrt{x-1}}=a\\3y-2=b\end{cases}}\left(a>0\right)\)(2) trở thành \(\hept{\begin{cases}2a+b=3\\a-3b=-2\end{cases}}\Rightarrow a=b=1\left(tm\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{\sqrt{x-1}}=1\\3y-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\left(tm\right)\\y=1\end{cases}}\)
Vậy hpt có hai nghiệm \(\hept{\begin{cases}x_1=2\\y_1=\frac{1}{3}\end{cases}}\); \(\hept{\begin{cases}x_2=2\\y_2=1\end{cases}}\)
chết chết quên kết luận nghiệm y ;-; bạn viết thêm (tm) hộ mình nhé :v