Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ne\pm2\)
Ta có : \(A=\left(\dfrac{\left(x+1\right)\left(x+2\right)+x\left(x-2\right)+2x^2+3}{x^2-4}\right):\left(\dfrac{x+2-x+3}{x+2}\right)\)
\(=\left(\dfrac{4x^2+x+5}{x^2-4}\right):\left(\dfrac{5}{x+2}\right)=\dfrac{\left(4x^2+x+5\right)\left(x+2\right)}{5\left(x+2\right)\left(x-2\right)}=\dfrac{4x^2+x+5}{5x-10}\)
\(=\dfrac{4x+9}{5}+\dfrac{23}{5x-10}\)
- Để A nhận giá trị nguyên :
\(5\left(x-2\right)\inƯ_{\left(23\right)}=\left\{1;-1;23;-23\right\}\)
\(\Rightarrow x\in\left\{\dfrac{11}{5};\dfrac{9}{5};\dfrac{33}{5};-\dfrac{13}{5}\right\}\)
=> Không tồn tại x nguyên để A nguyên .
b: =>(x+1)(x-1)-(x+3)(x-3)=2x^2+6x
=>2x^2+6x=x^2-1-x^2+9=8
=>2x^2+6x-8=0
=>x^2+3x-4=0
=>(x+4)(x-1)=0
=>x=-4 hoặc x=1(loại)
a: =>x^3+2x-2x(x^2+1)=0
=>x^3+2x-2x^3-2x=0
=>-x^3=0
=>x=0(nhận)
c: =>(x-2)(x+2)-(x+5)^2=x^2-8
=>x^2-4-x^2-10x-25=x^2-8
=>x^2-8=-10x-29
=>x^2+10x+21=0
=>(x+3)(x+7)=0
=>x=-3 hoặc x=-7
- AD tính chất định lý talet vào tam giác EPF có MN // FP ta được :
\(\dfrac{EM}{EF}=\dfrac{EN}{EP}=\dfrac{MN}{FP}=\dfrac{12}{x+12}=\dfrac{10}{10+4}=\dfrac{y}{16}\)
\(\Rightarrow\dfrac{12}{x+12}=\dfrac{y}{16}=\dfrac{10}{14}=\dfrac{5}{7}\)
\(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{80}{7}\\x=\dfrac{24}{5}\end{matrix}\right.\) ( cm )
Vậy ...
Ta có: EP = EN + NP = 10 + 4 = 14 (cm)
Xét tam giác EFP có: MN // FP (gt)
=> \(\dfrac{MN}{FP}=\dfrac{EN}{EP}=\dfrac{EM}{EF}\) (hệ quả định lý Talét)
Thay số: \(\dfrac{y}{16}=\dfrac{10}{14}=\dfrac{12}{12+x}\)
=> \(\left\{{}\begin{matrix}y=\dfrac{80}{7}\\12+x=16,8< =>x=\dfrac{24}{5}\end{matrix}\right.\)