Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`sin(2x-π/3)+1=0`
`<=>sin(2x-π/3)=-1`
`<=>2x-π/3=-π/2=k2π`
`<=>x=(5π)/12+kπ (k \in ZZ)`
Có: `-2020π < (5π)/12+kπ < 2020π`
`<=> -2020 < 5/12+k<2020`
`<=>-2020-5/12 <k<2020+5/12`
`=> k \in {-2020;.....;2020}`
`=>` Có `4041` giá trị của `k` thỏa mãn.
\(\frac{20152015}{20302030}\)=\(\frac{2015x10001}{2030x10001}\)=\(\frac{2015}{2030}\)=\(\frac{403x5}{406x5}\)=\(\frac{403}{406}\)
Mik chưa học lớp 11 nên ko trả lời đc sorry nha !! mik mới học lớp 6 thui
Bài làm :
A) Gọi A :" số cách chọn ra 6 số"
chọn 6 số trong 45 số có \(C^6_{45}=8145060\) cách
=> n (A) = 8145060 cách
B) Gọi B : " chọn ra 6 số mà tổng của 6 số đó là 30 "
Các tổ hợp 6 số có tổng bằng 30 là = { ( 1;2;3;4;5;15); (1;2;3;4;6;14) ; ( 1;2;3;4;7;13) ;(1;2;3;4;8;12) ;( 1;2;3;4;9;11);(1;2;3;5;6;13) ;( 1;2;3;5;7;12) ;(1;2;3;5;8;11) ; (1;2;3;5;9;10) ; (1;2;3;6;7;12) ; (1;2;3;6;8;11);(1;2;3;6;9;10) ; (1;2;3;7;8;9);(1;2;4;5;6;12) ; (1;2;4;5;7;11) ;(1;2;4;5;8;10) ;(1;3;4;5;6;11) ;(1;3;4;5;7;10) ;(1;3;4;5;8;9) ; (2;3;4;5;6;10);(2;3;4;5;7;9) }
=> có 21 tổ hợp thỏa mãn đề bài
=> n(B) = 21
C) Gọi C :" 6 số chọn ra có tổng bằng 138 "
các tổ hợp 6 số chọn ra có tổng bằng 138 là { ( 1;2;3;43;44;45 ) ; ( 1;2;4;42;44;45) ; (1;2;5;41;44;45) ;(1;2;5;42;43;45) ;(1;2;6; 40;44;45) ;(1;2;6;41;43 ;45) ; ( 1;2;7;39;44;45) ;(1;2;7;40;43;45) ;(1;2;8;38;44;45) ;(1;2;8;39 ;43;45);(1;2;9;37;44;45) ;(1;2;9;38;43;45) ;(1;2;10;36;44;45) ;(1;2;10;37;43;45) ;(1;2;11;35;44;45) ;(1;2;11;36;43;45) ;(1;2;12; 34 ;44;45) ;(1;2;12;35;43;45) ;(1;2;13;33;44;45) ;(1;2;13;34;43;45) ;(1;2;14;32;44;45) ;(1;2;14;33;43;45);(1;2;15;31;44;45) ;(1;2;15;32;43;45);(1;2;16;30;44;45) ;(1;2;16;31;43;45);(1;2;17;29;44;45) ;(1;2;17;30;43;45) ;(1;2;18;28;44;45) ;(1;2;18;29;43;45);(1;2;19;27;44;45) ;(1;2;19;28;43;45) ;(1;2;20;26;44;45) ;(1;2;20;27;43;45) ; (1;2;21;25;44;45) ;(1;2;21;26;43;45) ;(1;2;22;24;44;45) ;(1;2;22;25;43;45) ; (1;2;23;24;43;45) ... xin lỗi đi tổ hợp có 1;2 còn nhiều lắm .. nghỉ nghỉ .. kể ra có mà tới mai ... ng ra đề quá biến thái :v
Cho dãy số từ 1 đến 45, chọn ra 6 số:
A) tất cả các số lượng các biến: \(C^6_{45}\).
B) Có bao nhiêu biến có tổng bằng 30.
C) Có bao nhiêu biến có tổng bằng 138.
\(DK:0< x< 10\)
\(\Leftrightarrow\left(2\sin x.\cos x-\cos x\right)+\left(6\sin x-3\right)=0\)
\(\Leftrightarrow\cos x\left(2\sin x-1\right)+3\left(2\sin x-1\right)=0\)
\(\Leftrightarrow\left(2\sin x-1\right)\left(\cos x+3\right)=0\)
\(\Leftrightarrow\sin x=\frac{1}{2}\)
\(\Leftrightarrow x=30\left(l\right)\)
Vay PT voi \(x\in\left(0;10\right)\)vo nghiem
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[]{4x-3}-\sqrt[3]{6x-5}}{x^3-x^2-x+1}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[]{4x-3}-\left(2x-1\right)\right)+\left(\left(2x-1\right)-\sqrt[3]{6x-5}\right)}{x^2\left(x-1\right)-\left(x-1\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{4x-3-\left(2x-1\right)^2}{\sqrt[]{4x-3}+2x-1}+\dfrac{\left(2x-1\right)^3-\left(6x-5\right)}{\left(2x-1\right)^2+\left(2x-1\right)\sqrt[3]{6x-5}+\sqrt[3]{6x-5}}}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{-4\left(x-1\right)^2}{\sqrt[]{4x-3}+2x-1}+\dfrac{4\left(x-1\right)^2\left(2x+1\right)}{\left(2x-1\right)^2+\left(2x-1\right)\sqrt[3]{6x-5}+\sqrt[3]{\left(6x-5\right)^2}}}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{-\dfrac{4}{\sqrt[]{4x-3}+2x-1}+\dfrac{4\left(2x+1\right)}{\left(2x-1\right)^2+\left(2x-1\right)\sqrt[3]{6x-5}+\sqrt[3]{\left(6x-5\right)^2}}}{x+1}=1\)