Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D F M H E
a) Đề sai nha bạn (Phải là cm E là trực tâm của \(\Delta\)BHD)
Xét \(\Delta\)BDC: M là trung điểm của BC, HC=HD => H là trung điểm của CD.
=> HM là đường trung bình của \(\Delta\)BDC => HM//BD.
Mà HM vuông góc với EF => BD cũng vuông góc với EF (Quan hệ song song vuông góc)
Xét \(\Delta\)BHD: BE vuông góc với DH; HE vuông góc với BD ( EF vuông góc BD cmt)
=> E là trực tâm của \(\Delta\)BHD (đpcm)
b) Nối D với E.
Ta có E là trực tâm \(\Delta\)BHD (cmt) => DE vuông góc BH
Mà AC vuông góc BH => DE//AC (Quan hệ song song vuông góc) hay DE//CF
=> ^EDH=^FCH (Cặp góc So le trong)
Xét \(\Delta\)DEH và \(\Delta\)CFH:
^DHE=^CHF (Đối đỉnh)
HD=HC \(\Rightarrow\)\(\Delta\)DEH=\(\Delta\)CFH (g.c.g)
^EDH=^FCH
\(\Rightarrow\)HE=HF (2 cạnh tương ứng) => Đpcm.
Gọi giao điểm HM với DC là P; giao điểm HN với BC là E
a) Vì HP vuông góc với IK, mà IK//CD nên DC vuông góc với HP
=> HP và CE là các đường cao của ▲HCN cắt nhau ở M
=> M là trực tâm ▲HCN , nên NM là đường cao thứ 3 hay NM vuông góc với HC
Lại có HC vuông góc với AB (CH là đường cao)
=> NM//AB
Xét ▲BDC có M là trung điểm BC và NM//BD nên ND = NC
b) Do IK//CD nên theo Talet: IH/DN = IK/NC (= AI/AN)
=> IH/IK = ND/NC = 1 (Vì ND = NC). Vậy IH = HK
Gọi giao điểm HM với DC là P; giao điểm HN với BC là E
a) Vì HP vuông góc với IK, mà IK//CD nên DC vuông góc với HP
=> HP và CE là các đường cao của ▲HCN cắt nhau ở M
=> M là trực tâm ▲HCN , nên NM là đường cao thứ 3 hay NM vuông góc với HC
Lại có HC vuông góc với AB (CH là đường cao)
=> NM//AB
Xét ▲BDC có M là trung điểm BC và NM//BD nên ND = NC
b) Do IK//CD nên theo Talet: IH/DN = IK/NC (= AI/AN)
=> IH/IK = ND/NC = 1 (Vì ND = NC). Vậy IH = HK
\(a,\left\{{}\begin{matrix}DH=HC\\BM=MC\end{matrix}\right.\Rightarrow HM\) là đường trung bình tam giác BDC
\(\Rightarrow HM//BD\Rightarrow BD\perp HE\left(HM\perp HE\right)\\ \Rightarrow HE.là.đường.cao.\Delta BDH\left(1\right)\)
Ta có H là trực tâm nên CH hay CD là đường cao tam giác ABC
\(\Rightarrow CD\perp BA\Rightarrow DH\perp BE\\ \Rightarrow BE.là.đường.cao.\Delta BDH\left(2\right)\)
Ta có \(BE\cap HE=E\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow E.là.trực.tâm.\Delta BDH\)