K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

abc=1 khi a=1,b=1,c=1

=>(a+b+c)^3-(b+c-a)^3-(c+a-b)^3-(a+b-c)^3

=(1+1+1)^3-(1+1-1)^3-(1+1-1)^3-(1+1-1)^3

=3^3-1^3-1^3-1^3

=27-1-1-1

=24

30 tháng 7 2021

cho mình nha

DD
1 tháng 8 2021

\(A=\left(x+y+z\right)^3-\left(x+y-z\right)^3-\left(x-y+z\right)^3-\left(-x+y+z\right)^3\)

\(=\left(a+b+c\right)^3-a^3-b^3-c^3\)(\(a=-x+y+z,b=x-y+z,c=x+y-z\))

\(=\left(b+c\right)^3+3a\left(a+b+c\right)\left(b+c\right)-\left[\left(b+c\right)^3-3bc\left(b+c\right)\right]\)

\(=3\left(b+c\right)\left(a^2+ab+ac+bc\right)\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=24xyz\)

15 tháng 7 2021

\(1,E=x^2+y^2+z^2+xy+yz+xz+3\ge\sqrt[6]{x^2.y^2.z^2.xy.yz.xz}+3\ge3\)( cauchy)

dấu "=" xảy ra khi và chỉ khi \(x=y=z=0\)

vậy đẳng thức luôn dương

\(2,a.x^4-2x^3+10x^2-20x=0\)

\(x^2\left(x^2+10\right)-2x\left(x^2+10\right)=0\)

\(\left(x^2-2x\right)\left(x^2+10\right)=0\)

\(\orbr{\begin{cases}x^2-2x=0\\x^2+10=0\end{cases}\orbr{\begin{cases}x\left(x-2\right)=0\\x^2=-10\left(KTM\right)\end{cases}}}\)

\(\orbr{\begin{cases}x=0\left(tm\right)\\x=2\left(tm\right)\end{cases}}\)

\(b,x^2\left(x-1\right)-4x^2+8x-4=0\)

\(x^2\left(x-1\right)-\left(4x^2-8x+4\right)=0\)

\(x^2\left(x-1\right)-\left(2x-2\right)^2=0\)

\(x^2\left(x-1\right)-2\left(x-1\right)^2=0\)

\(\left(x-1\right)\left(x^2-2x+2\right)=0\)

\(\orbr{\begin{cases}x=1\\x^2-2x+2=0\end{cases}\orbr{\begin{cases}x=1\\\left(x-1\right)^2+1=0\end{cases}\orbr{\begin{cases}x=1\left(TM\right)\\\left(x-1\right)^2=-1\left(KTM\right)\end{cases}}}}\)

\(c,x^3+2x+10+5x^2=0\)

\(x^2\left(x+5\right)+2\left(x+5\right)=0\)

\(\left(x^2+2\right)\left(x+5\right)=0\)

\(\orbr{\begin{cases}x^2+2=0\\x+5=0\end{cases}\orbr{\begin{cases}x^2=-2\left(KTM\right)\\x=-5\left(TM\right)\end{cases}}}\)

15 tháng 7 2021

Ta có: E = x2 + y2  + z2 + xy + yz + xz + 3 

=> 2E = 2x2 + 2y2 + 2z2  +2xy + 2yz + 2xz + 6 

2E = (x + y)2 + (Y + z)2 + (x + z)2 + 6 

Do  (x + y)2 \(\ge\)0; (y + z)2 \(\ge\)0; (z + x)2 \(\ge\)0; 6 > 0

=> 2E \(\ge\)6 => E \(\ge\)3 > 0

=> biểu thức E luôn dương với mọi giá trị của biến

8 tháng 9 2021

1. Tìm n để mỗi phép chia sau là phép chia hết (\(n\) là số tự nhiên)

a. Vì đa thức \((5x^3-7x^2+x)\) chia hết cho \(3x^n\) nên mỗi hạng tử của đa thức chia hết cho \(xn\)

=> hạng tử \(x\) – có số mũ nhỏ nhất của đa thức chia hết cho \(3x^n\) .

Do đó, \(x:xn\) \(\Rightarrow0\le n\le1\). Vậy \(n\in\text{{}0;1\)

b. Vì đa thức \((13x^4y^3-5x^3y^3+6x^2y^2)\) chia hết cho \(5x^ny^n\) nên mỗi hạng tử của đa thức trên chia hết cho \(5x^ny^n\)  Do đó, hạng tử \(6x^2y^2\)chia hết cho \(5x^ny^n\) \(\Rightarrow0\le n\le2\) . Vậy \(n\in\text{ {}0;1;2\)

2 Thực hiện phép tính:

\(a.(7.3^5-3^4+3^6):3^4\)

\(=(7.3^5:3^4)+(3^6:3^4)\)

\(=7.3-1+3^2\)

\(=21-1+9=29\)

\(b.(16^3-64^2):8^3\)

\(=(16^3:8^3)-(64^2:8^3)\)

\(=(16:8)^3-(8^4:8^3)(\) \(64=8^2\)nên \(64^2=(8^2)^2=8^4)\)

\(=2^3-8=8-8=0\)

15 tháng 7 2021

1. a) x4 - 2x3 + 10x2 - 20x = 0

<=> x3(x - 2) + 10x(x - 2) = 0

<=> (x3 + 10x)(x - 2) = 0

<=> x(x2 + 10)(x - 2) = 0

<=> x(x - 2) = 0 (Vì x2 + 10 > 0)

<=> \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy x \(\in\left\{0;2\right\}\)là nghiệm phương trình

b) x2(x - 1) - 4x2 + 8x - 4 = 0 

<=> x2(x - 1) - 4(x - 1)2 = 0

<=> (x - 1)(x2 - 4x + 4) = 0

<=> (x - 1)(x - 2)2 = 0

<=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy x \(\in\left\{1;2\right\}\)là nghiệm phương trình

c) x3  +2x + 10 + 5x2 = 0

<=> x(x2 + 2) + 5(x2 + 2) = 0

<=> (x + 5)(x2 + 2) = 0

<=> x + 5 = 0 (Vì x2 + 2 > 0)

<=> x = -5

Vậy x = -5 là nghiệm phương trình 

15 tháng 7 2021

Bài 1 : bạn tự làm nhé, do mình thấy khá bth chỉ là số mũ to hơn tẹo :vvv 

Bài 2 : 

\(E=x^2+y^2+z^2+xy+yz+xz+3\)

\(2E=2x^2+2y^2+2z^2+2xy+2yz+2xz+6\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(z^2+2xz+x^2\right)+6\)

\(=\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2+6\ge6>0\)

Vậy E luôn dương với mọi giá trị của biến