K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
27 tháng 8 2021

Hạ \(DH\perp AB,CK\perp AB\).

Tam giác \(AHD\)vuông tại \(H\)\(\widehat{ADH}=30^o\)nên \(AH=\frac{1}{2}AD=1\left(cm\right)\)

\(HD=\sqrt{AD^2-AH^2}=\sqrt{2^2-1^2}=\sqrt{3}\left(cm\right)\)

Tương tự \(BK=1\left(cm\right)\).

\(DC=HK=AB-AH-BK=2,5\left(cm\right)\)

\(S_{ABCD}=\frac{AB+CD}{2}.DH=\frac{4,5+2,5}{2}.\sqrt{3}=\frac{7\sqrt{3}}{2}\left(cm^2\right)\)

29 tháng 8 2021

Kéo dài AD và BC, chúng cắt nhau tại M, dựng đường cao DH.

⇒ tam giác ABM đều.⇒AB=AM=4,5⇒DC=AM-AD=4,5-2=2,5Xét tam giác ADH vuông tại D có ADH=30AH=1/2AD=1/2.2=1Mặt khác ta có:DH²=AD²-AH²(theo định lý PITAGO)⇒DH²=4-1=3⇒DH=√3⇒Sabcd=(DC+AB).DH/2=(2,5+4,5).√3/2=7√3/2
29 tháng 8 2020

A B C D E F

Bài làm:

Từ D,E kẻ DE,CF vuông góc với AB \(\left(E,F\in AB\right)\)

Xét trong Δ vuông ADE tại D có góc A bằng 60 độ

=> \(\widehat{ADE}=30^0\)

Vì tam giác ADE có: \(\hept{\begin{cases}\widehat{A}=60^0\\\widehat{ADE}=30^0\\\widehat{AED}=90^0\end{cases}}\) => \(AE=\frac{AD}{2}=\frac{2}{2}=1\left(cm\right)\)

Tương tự tính được: \(BF=1\left(cm\right)\)

=> \(FE=AB-AE-BF=4,5-2=2,5\left(cm\right)\)

Vì DC // FE và DE // FC nên theo t/c đoạn chắn

=> DC = FE = 2,5 (cm)

Áp dụng định lý Pytago ta được: \(DE^2=AD^2-AE^2=2^2-1^2=3\left(cm\right)\)

=> \(DE=\sqrt{3}\left(cm\right)\)

Diện tích hình thang cân ABCD là: \(\frac{\left(AB+CD\right).DE}{2}=\frac{7\sqrt{3}}{2}\left(cm^2\right)\)

29 tháng 8 2020

         Giải

Kẻ DH vuông góc với AB

\(\sin\widehat{A}=\frac{DH}{AD}\)

\(\Leftrightarrow\sin60^o=\frac{DH}{2}\Rightarrow DH=\sqrt{3}\)

\(\cos A=\frac{AH}{AD}\)

\(AH=\cos60^o.2\)

\(\Rightarrow DC=AB-1-1=4,5-2=2,5\)

\(S\)ABCD=\(\frac{1}{2}.\sqrt{3}.\left(4,5+2,5\right)\)

\(=\frac{7\sqrt{3}}{2}\)

14 tháng 5 2019

. a) HS tự chứng minh

b) Kẻ đường cao AH, BK,chứng minh được DH = CK

Ta được   H D = C D − A B 2 = 3 c m

Þ AH = 4cm Þ  SABCD = 20cm2

1 tháng 9 2019

Hạ CH và DK vuông góc với AB

Ta có:

A K = B H = 1 2 A D = 1 c m  

Từ đó: CD = 2,5cm

C H = 3 c m

S A B C D = A B + C D . C D 2 = 7 3 2 c m 2