Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: =>2x-5=4 hoặc 2x-5=-4
=>2x=9 hoặc 2x=1
=>x=9/2hoặc x=1/2
2: \(\Leftrightarrow\left|2x+1\right|=\dfrac{3}{4}-\dfrac{7}{8}=\dfrac{-1}{8}\)(vô lý)
3: \(\Leftrightarrow\left|5x-3\right|=x+5\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-5\\\left(5x-3-x-5\right)\left(5x-3+x+5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-5\\\left(4x-8\right)\left(6x+2\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{2;-\dfrac{1}{3}\right\}\)
a); b) Do tích = 0
=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)
=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)
a; *x-1=0 <=>x=1
*2x+5=0 <=>x=-2,5
*x2+2=0 <=> ko có x
b; tương tự a
a. \(9\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow9x+18-3x-6=0\)
\(\Leftrightarrow6x+12=0\)
\(\Leftrightarrow x=-2\)
e. \(\left(2x-1\right)^2-45=0\)
\(\Leftrightarrow4x^2-2x+1-45=0\)
\(\Leftrightarrow4x^2-2x-44=0\)
Đến đó tự giải tiếp nha!
c. \(2\left(2x-5\right)-3x=0\)
\(\Leftrightarrow4x-10-3x=0\)
\(\Leftrightarrow x-10=0\)
\(\Leftrightarrow x=10\)
g. \(2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
1,
a,\(2x\left(3x^2-5x+3\right)\)
\(=6x^3-10x^2+6x\)
b,\(-2x\left(x^2+5x-3\right)\)
\(=-2x^3-10x^2+6x\)
c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)
\(=-x^4+2x^2-\dfrac{3}{2}x\)
Bài 2:
a) \(\left(2x-1\right)\left(x^2-5-4\right)\)
\(=\left(2x-1\right)\left(x^2-9\right)\)
\(=2x^3-18x-x^2+9\)
b) \(-\left(5x-4\right)\left(2x+3\right)\)
\(=-\left(10x^2+15x-8x-12\right)\)
\(=-10x^2-7x+12\)
c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)
\(=8x^3-y^3\)
Bài 1:
a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)
\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)
\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)
Suy ra: \(12x-45-12x^2+45x=0\)
\(\Leftrightarrow-12x^2+57x-45=0\)
\(\Leftrightarrow-12x^2+12x+45x-45=0\)
\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)
\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)
mà \(-3\ne0\)
nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)
b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)
\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)
\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)
Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)
\(\Leftrightarrow-x^2+16x-39=0\)
\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)
\(\Leftrightarrow x^2-13x-3x+39=0\)
\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)
\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)
Vậy: Tập nghiệm S={3;13}
c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)
\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)
\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)
\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)
Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)
\(\Leftrightarrow-21x^2+26x+11=0\)
\(\Leftrightarrow-21x^2-7x+33x+11=0\)
\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)
1) 3(x - 1)2 - 3x(x - 5) = 1
⇒ 3(x2 - 2x + 1) - 3x2 + 15x = 1
⇒ 3x2 - 6x + 3 - 3x2 + 15x = 1
⇒ 9x = 1 - 3
⇒ 9x = -2
⇒ x = \(\dfrac{-2}{9}\)
2) (6x−2)2+(5x−2)2−4(3x−1)(5x−2)=0
⇒ (6x - 2)2 + (5x - 2)2 -4(6x - 2)(5x - 2) = 0
⇒ (6x - 2)2 -2(6x - 2)(5x - 2) + (5x - 2)2 -2(6x - 2)(5x - 2) = 0
⇒ (6x - 2)(6x - 2 - 5x +2) + (5x - 2)(5x - 2 - 6x + 2) = 0
⇒ x(6x - 2) - x(5x - 2) = 0
⇒ x(6x - 2 - 5x +2) = 0
⇒ xx = 0
⇒ x = 0
Còn mấy cái sau mình trả lời sau nha
Còn hai câu sau nữa nè :)
3) (2x - 5)(2x + 5) - 1 = 0
⇒ 4x2 - 25 - 1 = 0
⇒ 4x2 = 26
⇒ x2 = \(\dfrac{13}{2}\)
⇒ x = \(\sqrt{\dfrac{13}{2}}\) hoặc x = -\(\sqrt{\dfrac{13}{2}}\)
4) 5x2 - 20 = 0
⇒ 5x2 = 20
⇒ x2 = 4
⇒ x = 2 hoặc x = -2
b. (x2-0,5):2x-(3x-1)2:(3x-1)=0
<=> \(\frac{1}{2}\)x-0,25-3x+1=0
<=>\(-\frac{5}{2}\)x+0,75=0
<=> \(-\frac{5}{2}\)x=-0,75
<=> x=0,3
chúc bạn học tốt
\(a.\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=4\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]=4\)
\(\Leftrightarrow\left(x^2+x+5x+5\right)\left(x^2+4x+2x+8\right)=4\)
\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=4\)
\(\text{Đặt a = }x^2+6x+5\text{ }\Rightarrow\text{ }a+3=x^2+6x+8\)
\(\Leftrightarrow a\left(a+3\right)=4\)
\(\Leftrightarrow a^2+3a-4=0\)
\(\Leftrightarrow a^2+4a-a-4=0\)
\(\Leftrightarrow a\left(a+4\right)-\left(a+4\right)=0\)
\(\Leftrightarrow\left(a+4\right)\left(a-1\right)=0\)
\(\Leftrightarrow\left(x^2+6x+9\right)\left(x^2+6x+4\right)=0\)
\(\Leftrightarrow\left(x+3\right)^2\left[\left(x^2+6x+9\right)-5\right]=0\)
\(\Leftrightarrow\left(x+3\right)^2\left[\left(x+3\right)^2-5\right]=0\)
\(\text{Hoặc }\left(x+3\right)^2=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
\(\text{Hoặc }\left(x+3\right)^2-5=0\Leftrightarrow\left(x+3\right)^2=5\Leftrightarrow\hept{\begin{cases}x+3=\sqrt{5}\\x+3=-\sqrt{5}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{5}-3\\x=-\sqrt{5}-3\end{cases}}}\)
\(\text{Vậy }x\in\left\{-3;\sqrt{5}-3;-\sqrt{5}-3\right\}\)
Đặt x + 4 = a ; 2a - 5 = b ; 1 - 3x = c
Nhận thấy a + b + c = 0
=> a + b = -c
<=> (a + b)5 = (-c)5
<=> a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 = -c5
<=> a5 + b5 + c5 = -5ab(a3 + 2a2b + 2ab2 + b3)
= -5ab[(a3 + b3) + 2ab(a + b)]
= -5ab(a + b)(a2 + b2 + ab)
= 5abc(a2 + b2 + ab) = 0
=> 5(x + 4)(2x - 5)(1 - 3x)[(x + 4)2 + (2x - 5)2 + (x + 4)(2x - 5)] = 0
<=> 5(x + 4)(2x - 5)(1 - 3x) = 0 (vì [(x + 4)2 + (2x - 5)2 + (x + 4)(2x - 5) > 0 với mọi x)
=> x = -4 hoặc x = 2,5 hoặc x = 1/3
Vậy \(x\in\left\{-4;2,5;\frac{1}{3}\right\}\)là nghiệm phương trình
Có đoạn này em không hiểu, tại sao (x+4)^2 + (2x-5)^2 + (x+4)(2x-5) > 0 với mọi x ạ?