K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

từ B kẻ đường thẳng vuông góc với AC tại k

ta có: 2.AK.b=AK.b+AK.b           

=AK.(AK+CK)+(b-CK).b

=AK^2+AK.CK+b^2-b.CK

=c^2-BK^2+b^2-CK.(b-AK)

=c^2-(a^2-CK^2)+b^2-CK.CK

=c^2-a^2+CK^2+b^2-CK^2

=b^2+c^2-a^2

mà: cosA=AK/c=2.AK.b/2bc

=(b^2+c^2-a^2)/2bc

=>b^2+c^2-a^2=2bc.cosA (đpcm)

 

27 tháng 6 2021

hay phết

14 tháng 9 2019

bn tự vẽ hình nha !

đặt CH=b'

Xét tam giác BHC vuông tại H có:

a2= BH2 + b'2(Đlí pi-ta-go)(1)

Xét tam giác ABH vuông tại H có:

=> BH2 = AB2-AH2=c2 - c'2

Từ (1) => a2= c2-c'2+b'2

=c2-c'2+(b-c')2 ( Vì b' +c'=b)

=c2+b2-2bc' (ĐPCM)

30 tháng 6 2019

Hiện tại lm đc câu a, câu b tí nx làm

Mk sẽ ko tính theo a,b,c mà tính theo AB,AC,BC

Kẻ đg cao CH\(\Rightarrow\cos A=\frac{AH}{AC}\)

Xét \(VP=AH^2+HC^2+\left(AH+HB\right)^2-2AB.AC.\frac{AH}{AC}\)

\(=AH^2+HC^2+AH^2+HB^2+2AH.HB-2AB.AH\)

\(=2AH^2+BC^2-2AH\left(AB-HB\right)=2AH^2+BC^2-2AH.AH=2AH^2+BC^2-2AH^2=BC^2=VT\)

30 tháng 6 2019

Cái kia phải là \(\tan\frac{\widehat{ABC}}{2}\) ms đúng

Kẻ phân giác BM

\(\tan\widehat{\frac{ABC}{2}}=\tan\widehat{ABM}=\frac{AM}{AB}\)

Có BD là p/g\(\Rightarrow\frac{AM}{AB}=\frac{MC}{BC}\Leftrightarrow AB=\frac{AM.BC}{MC}\)

Xét \(VT=\frac{AC}{AB+BC}=\frac{AC}{\frac{AM.BC}{MC}+BC}=\frac{AC}{\frac{BC\left(AM+MC\right)}{MC}}=\frac{AC.MC}{BC.AC}=\frac{MC}{BC}\)

\(\frac{MC}{BC}=\frac{AM}{AB}=\tan\widehat{ABM}\)

\(\Leftrightarrow\frac{AC}{AB+BC}=\tan\widehat{ABM}=\tan\frac{\widehat{ABC}}{2}\)

21 tháng 4 2020

Theo BĐT tam giác ta có \(a< b+c\Rightarrow a^2< ab+ac\)

Tương tự \(b^2< bc+ba;c^2< ca+cb\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Câu 2 nếu a,b,c không là độ dài 3 cạnh tam giác nó vẫn đúng theo BĐT Schur

8 tháng 10 2017

a) \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm.

Đẳng thức khi \(a=b=c\)

b) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm

Đẳng thức khi \(a=b=1\)

Các bài tiếp theo tương tự :v

g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)

i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)

Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)

Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm

j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm

8 tháng 5 2019

Vì a;b;c là 3 cạnh của tam giác nên mỗi nhân tử của VP đều dương,áp dụng bđt Cauchy:

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\)

\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=c\)

\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=a\)

Nhân theo vế => ddpcm "=" khi a=b=c

8 tháng 5 2019

Câu hỏi dài nên mỗi ý mk làm thành 1 câu nha