Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gửi bạn lời giải. Có gì sai sót thì bạn góp ý nhé!
Kẻ \(\)$\(CH \perp AB\)$ tại H, $\(DK \perp AB\)$ tại K.
Áp dụng định lí Pytago vào tam giác ABC vuông tại C, ta có:
$\(AC^2=AB^2-BC^2=26^2-10^2=576\)$
Áp dụng hệ thức lượng vào tam giác ABC vuông tại C với đường cao CH, ta có:
$\(\dfrac{1}{CH^2}=\dfrac{1}{DK^2}=\dfrac{1}{AC^2}+\dfrac{1}{BC^2}=\dfrac{1}{100}+\dfrac{1}{576}=\dfrac{169}{14400}\)$ (do ABCD là hình thang cân)
⇒ $\(CH^2=DK^2=\dfrac{14400}{169}\)$
⇒ $\(CH=DK=\dfrac{120}{13}\)$
Áp dụng định lí Pytago vào tam giác CHB vuông tại H và tam giác AKD vuông tại K có:
$\(BH^2=AK^2=10^2-\dfrac{14400}{169}=\dfrac{2500}{169}\)$ ⇒ $\(BH=AK=\dfrac{50}{13}cm\)$ Ta có: $\(AB=AK+HK+BH=AK+CD+HK\)$ ⇒ $\(CD=AB-AK-HK=26-\dfrac{100}{13}=\dfrac{238}{13}\)$
Ta có: $\({S}_{ABCD}=\dfrac{(AB+CD).AH}{2}=\dfrac{(26+\dfrac{238}{13}).\dfrac{120}{13}}{2}=\dfrac{34560}{169} cm^2\)$
2 đg chéo vuông góc vói nhau=>là hcn
dt hcn =dt ht cân
26x10=260 cm2
đ/s: 260 cm2
Ai tích mk mk sẽ tích lại
Hạ CH vuông với AB tại H
Ta có : \(HB=\frac{AB-CD}{2}=8\left(cm\right)\)
\(\Rightarrow BC^2=HB.AB=8.26\)
\(\Rightarrow BC=4\sqrt{3}\)
\(\Rightarrow HC=\sqrt{BC^2-HB^2}=12\)
\(\Rightarrow S_{ABCD}=\frac{HC.\left(AB+CD\right)}{2}=\frac{12.\left(26+10\right)}{2}=216\left(cm^2\right)\)
Ps : nhớ k ạ :33
# Aeri #
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)
Kẻ CH,DK lần lượt vuông góc AB
ΔCAB vuông tại C
=>CA^2+CB^2=AB^2
=>CA^2+10^2=26^2
=>CA=24cm
ΔCAB vuông tại C có CH là đường cao
nên CH*AB=CA*CB
=>CH*26=10*24=240
=>CH=120/13(cm)
ΔCHB vuông tại H
=>HB^2+CH^2=CB^2
=>HB^2=10^2-(120/13)^2=2500/169(cm)
=>HB=50/13(cm)
Xét ΔDKA vuông tại K và ΔCHB vuông tại H có
DA=CB
góc DAK=góc CBH
=>ΔDKA=ΔCHB
=>KA=HB=50/13cm
KH=AB-AK-HB
=26-50/13*2=238/13(cm)
Xét tứ giác KDCH có
DC//KH
DK//CH
Do đó: KDCH là hình bình hành
=>DC=KH=238/13(cm)
S ABCD=1/2*(DC+AB)*CH
=1/2(238/13+26)*120/13
=34560/169(cm2)
2 đường chéo vuông góc vói nhau=>là hình chữ nhật
Diện tích hình chữ nhật =Diện tích hình thang cân
26x10=260 cm2
đ/s: 260 cm2
+) ABCD là hình thang cân => AD = BC = 10 cm
Áp ĐL Pi- ta go trong tam giác ACD có: AC2 = AB2 - BC2 = 262 - 102 = 576 => AC = √576576 = 24 cm
Kẻ CH vuông góc với AB
Áp dụng hệ thức lượng trong tam giác vuông ACB có: CH.AB = AC.CB
=> CH.26 = 24.10 = 240 => CH = 120/13
+) kẻ DK vuông góc với AB
Dễ có: tứ giác DCHK là hình chữ nhật => DC = HK
Mặt khác, tam giác ADK = BCH (cạnh huyền - góc nhọn) => AK = BH
+) AD ĐL Pi - ta go trong tam giác CBH có: BH2 = BC2 - CH2 = 100 - (120/13)2 = 2500/269 => BH = 50/13 cm
=> CD = HK = AB - BH - AK = 26 - 50/13 - 50/13 = 238/13 cm
Thay số => SABCD = (CD + AB).CH / 2 =......