Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) CÓ: A = (1-1/42).(1-1/52).(1-1/62)......(1-1/2002)
=\(\frac{4^2-1^2}{4^2}\). \(\frac{5^2-1^2}{5^2}\). \(\frac{6^2-1^2}{6^2}\)....... \(\frac{200^2-1^2}{200^2}\)
Ta có công thức sau : a2-b2= a2 -ab+ab-b2
= a(a-b) + b(a-b)
= (a+b)(a-b)
ÁP DỤNG CÔNG THỨC TRÊN VÀO BÀI TOÁN TA ĐƯỢC :
A= \(\frac{3.5}{4^2}\). \(\frac{4.6}{5^2}\). \(\frac{5.7}{6^2}\)......\(\frac{199.201}{200^2}\)
= \(\frac{\left(3.4.5.....199\right)\left(5.6.7....201\right)}{\left(4.5.6......200\right)^2}\)
= \(\frac{\left(3.4.5.......199\right)\left(5.6.7.....200.201\right)}{\left(4.5.6.....199.200\right)\left(4.5.6......200\right)}\)
= \(\frac{3.201}{200.4}\)
= \(\frac{603}{800}\)
b)Từ đề bài ta suy ra : B=\(\frac{1.3}{5.7}\).\(\frac{3.5}{7.9}\). \(\frac{5.7}{9.11}\)...... \(\frac{99.101}{103.105}\)
= \(\frac{1.3^2.5^2.7^2......99^2.101}{5.7^2.9^2.11^2....99^2.101^2.103^2.105}\)
=\(\frac{3^2.5}{101.103^2.105}\)
=\(\frac{3}{7500563}\)
Ta có 13x = \(\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
13y = \(\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
Vì 1317 + 1 > 1316 + 1
=> \(\frac{1}{13^{17}+1}< \frac{1}{13^{16}+1}\)
=> \(\frac{12}{13^{17}+1}< \frac{12}{13^{16}+1}\)
=> \(1+\frac{12}{13^{17}+1}< 1+\frac{12}{13^{16}+1}\)
=> 13x < 13y
=> x < y
Vậy x < y
Ta có 1 - a2 = 1 - a + a - a2 = (1 - a) + a(1 - a) = (1 - a)(1 + a)
Khi đó B = \(\left(1-\frac{1}{12^2}\right).\left(1-\frac{1}{13^2}\right).\left(1-\frac{1}{14^2}\right)...\left(1-\frac{1}{80^2}\right)\)
\(=\frac{1-12^2}{12^2}.\frac{1-13^2}{13^2}.\frac{1-14^2}{14^2}....\frac{1-80^2}{80^2}\)
\(=\frac{\left(1-12\right)\left(1+12\right)}{12^2}.\frac{\left(1-13\right).\left(1+13\right)}{13^2}.\frac{\left(1-14\right)\left(1+14\right)}{14^2}...\frac{\left(1-80\right)\left(1+80\right)}{80^2}\)
\(\frac{-11.13.\left(-12\right).14.\left(-13\right).15....\left(-79\right).81}{12^2.13^2.14^2...80^2}=-\frac{11.13.12.14.13.15...79.81}{12.12.13.13.14.14...80.80}\)
\(=-\frac{\left(11.12.13...79\right).\left(13.14.15...81\right)}{\left(12.13.14...80\right).\left(12.13.14...80\right)}=-\frac{11.81}{80.12}=-\frac{891}{960}\)