K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2016

ADHT vi-et ta có \(x_1.x_2=-3\) và \(x_1+x_2=1\)

\(X=x_1^3x_2+x_2^3x_1+21=x_1x_2\left(x_1^2+x_2^2\right)+21=x_1x_2\left(\left(x_1+x_2\right)^2+2x_1x_2\right)\)

thay vi et vào là tính được

26 tháng 5 2016

cái đấy mk hỉu r ạ nhưng trong hướng dẫn giải lại giải khác cơ ạ

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

Ta thấy:

\(\Delta=(m-3)^2+4(2m+1)=m^2+2m+13=(m+1)^2+12>0, \forall m\in\mathbb{R}\)

Do đó PT luôn có 2 nghiệm phân biệt với mọi $m$

Áp đụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=3-m\\ x_1x_2=-2m-1\end{matrix}\right.\)

Khi đó:

\(A=4x_1^2-x_1^2x_2^2+4x_2^2+x_1x_2\)

\(=4(x_1^2+x_2^2+2x_1x_2)-(x_1x_2)^2-7x_1x_2\)

\(=4(x_1+x_2)^2-(x_1x_2)^2-7x_1x_2\)

\(=4(3-m)^2-(-2m-1)^2-7(-2m-1)\)

\(=42-14m\)

Bạn muốn chứng minh biểu thức A thế nào???

28 tháng 5 2019

Đề này bị nhầm đấy cậu ahh

28 tháng 5 2018

k có tl à b

6 tháng 4 2017

\(x^2-2mx+m^2-m+4=0\)

a/ ( a = 1; b = -2m; c = m^2 - m + 4 )

\(\Delta=b^2-4ac\)

   \(=\left(-2m\right)^2-4.1.\left(m^2-m+4\right)\)

   \(=4m^2-4m^2+4m-16\)   

    \(=4m-16\)

Để pt luôn có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4m-16\ge0\Leftrightarrow m\ge4\)

b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m\\P=x_1x_2=\frac{c}{a}=m^2-m+4\end{cases}}\)

Ta có: \(A=x_1^2+x_2^2-x_1x_2\)

             \(=S^2-2P-P\)

             \(=S^2-3P\)

             \(=\left(2m\right)^2-3\left(m^2-m+4\right)\)

             \(=4m^2-3m^2+3m-12\)

              \(=m^2+3m-12\)

               \(=m^2+3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-12\)

                \(=\left(m+\frac{3}{2}\right)^2-\frac{57}{4}\ge-\frac{57}{4}\)

Vậy: \(MinA=-\frac{57}{4}\Leftrightarrow\left(m+\frac{3}{2}\right)^2=0\Leftrightarrow m=-\frac{3}{2}\)

6 tháng 4 2017

a)) Δ=b2-4ac
Δ=(-2m)2-4(m2-m+4)
Δ=4m-16
 để pt có ng khi Δ > 0 & Δ=0
 => m> hoặc = 4
 

8 tháng 4 2020

9.3

\(pt:x^2+4x-1\)

\(\Delta=4^2-4.1.\left(-1\right)=20\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{-4+\sqrt{20}}{2}=-2+\sqrt{5}\\x_2=\frac{-4-\sqrt{20}}{2}=-2-\sqrt{5}\end{matrix}\right.\)

\(a.A=\left|x_1\right|+\left|x_2\right|=\left|-2+\sqrt{5}\right|+\left|-2-\sqrt{5}\right|=-2+\sqrt{5}+2+\sqrt{5}=2\sqrt{5}\)

b. Theo hệ thức Vi-et:

\(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1.x_2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x^2_2=16-2x_1x_2=16-2.1=14\\x_1^2x_2^2=1\end{matrix}\right.\)

\(B=x_1^2\left(x_1^2-7\right)+x_2^2\left(x_2^2-7\right)=x_1^4-7x_1^2+x_2^4-7x^2_2=\left(x_1^2\right)^2+\left(x_2^2\right)^2-7\left(x^2_1+x^2_2\right)=\left(x^2_1+x^2_2\right)^2-2x_1^2x_2^2-7\left(x_1^2+x_2^2\right)=14^2-2.1-7.14=96\)

8 tháng 4 2020

9.1 Để phương trình có hai nghiệm phân biệt thì :

\(\Delta'=2^2-2=2>0\)

Theo hệ thức Viei, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2\end{matrix}\right.\)

a) \(S=\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1.x_2}{x_1+x_2}=\frac{2}{4}=\frac{1}{2}\)

b) \(Q=\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1.x_2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{4^2-2.2}{2}=6\)

c) \(K=\frac{1}{x_1^3}+\frac{1}{x_2^3}=\frac{\left(x_1+x_2\right)(\left(x_1+x_2\right)^2-3xy)}{\left(x_1.x_2\right)^3}=5\)

\(G=\frac{x_1}{x_2^2}+\frac{x_2}{x_1^2}=\frac{\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)}{\left(x_1x_2\right)^2}=10\)

14 tháng 5 2017

Theo hệ thức Viet,ta có:

\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1.x_2=-3\end{matrix}\right.\)

Ta có x13+x23+21=x1.x2(x12+x22)+21=(-3)\([\)(x1+x2)2-2x1.x2\(]\)+21=(-3)\([\)12-2(-3)\(]\) +21=0

14 tháng 5 2017

Từ pt trên theo hệ thức Viet ta có:

\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=-3\end{matrix}\right.\)

Mà : x13x2 + x23x1 + 21 = x1x2( x12+x22) +21 = x1x2((x1+x2)2-2x1x2)+21

Đến đây bạn thay vào là ra nhé ^^

12 tháng 5 2019

a) Khi m=3 thì phương trình đã cho tương đương với:x2-3x+2=0<=>x2-x-2x+2=0<=>x(x-1)-2(x-1)=0<=>(x-1)(x-2)=0<=>\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy: nghiệm của phương trình tại m=3 là 1 và 2

b) Ta có:\(\Delta\)=m2-4m+4=(m-2)2\(\ge\)0 (đúng với mọi m là số thực)

Vậy: phương trình đã cho có 2 nghiệm x1,x2 với mọi m

c)A=x12-2x1.x2+x22-4x1.x2=(x1+x2)2-4x1.x2

Theo Định lý Viète, ta có:x1+x2=m và x1.x2=m-1

Thay vào A, ta được:
A=m2-4.(m-1)=m2-4m+4=(m-2)2\(\ge\)0

Vậy: giá trị nhỏ nhất của A là 0 khi m=2