K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

1 (ko chắc)

4 tháng 8 2016
1 và là x=-√2
21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

20 tháng 4 2019

a) phương trình có a.c=3.(-8)=-24<0
vì a.c <0 nên phương trình có 2 nghiệm
b) phương trình có \(a.c=2004.\left(-1185\sqrt{5}\right)< 0\)
vì a.c<0 nên phương trình có 2 nghiệm
c) phương trình có \(a.c=3\sqrt{2}.\left(\sqrt{2}-\sqrt{3}\right)=6-3\sqrt{6}< 0\)
vì a.c<o nên phương trình có 2 nghiệm
d)phương trình có a.c=2010.(-m2)=-2010m2<0
vì a.c<0 nên phuong trình có 2 nghiệm

1 tháng 11 2020

Bài 1 :

a) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)

Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)

Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)

Vậy \(x=2\)

1 tháng 11 2020

Bài 2: 

\(2x^2+y^2-2xy+2y-6x+5=0\)

\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)

Vì \(\left(x-y-1\right)^2\ge0\forall x,y\)\(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)

Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy \(x=2\)và \(y=1\)

5 tháng 8 2016

\(pt\Leftrightarrow\left(x^3+2\sqrt{2}\right)+2x^2+2\sqrt{2}x=0\)

\(\Leftrightarrow\left(x+\sqrt{2}\right)\left(x^2-\sqrt{2}x+2\right)+2x\left(x+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left(x+\sqrt{2}\right)\left[x^2+\left(2-\sqrt{2}\right)x+2\right]=0\)

\(\Leftrightarrow x=-\sqrt{2}\)

29 tháng 4 2020

Để phương trình có nghiệm kép: \(\Delta=0\)

<=> \(\left(\sqrt{3m-1}\right)^2-\sqrt{m^2-6m+17}=0\)

<=> \(\sqrt{m^2-6m+17}=3m-1\)

<=> \(\hept{\begin{cases}m^2-6m+17=9m^2-6m+1\\3m-1\ge0\end{cases}}\)

<=> \(\hept{\begin{cases}m^2-2=0\\m\ge\frac{1}{3}\end{cases}}\Leftrightarrow m=\sqrt{2}\)

Vậy:...

28 tháng 10 2015

chuyển vế rồi bình phương 2 về được.

\(2-2x\sqrt{2}+x^2=1-2x\sqrt{2}+2x^2\)

<=> x2 -1 = 0

<=> x       = +- 1