K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow px-2=0\)

Để phương trình vô nghiệm thì p=0

b: \(\Leftrightarrow x\left(p^2-4\right)=p-2\)

Để phương trình có vô số nghiệm thì p-2=0

hay p=2

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

12 tháng 11 2019

3-2x=1

2x=2

x=1

12 tháng 11 2019

câu 1 là |3-2x|= 1 - x nha  :< mình viết thiếu

26 tháng 11 2021

\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)

\(b,\left(m-1\right)x^2-2mx+m-2=0\)

\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)

\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)

\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)

\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)

\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)

 

 

 

30 tháng 6 2020

phương trình vô nghiệm: 

\(\Delta'< 0\Leftrightarrow\left(m+1\right)^2-4< 0\Leftrightarrow-2< m-1< 2\Leftrightarrow-1< m< 3\)

15 tháng 3 2018

Điều kiện của phương trình:

4x – 3 ≥ 0 ⇒ x ≥ 3/4;

-2x + 1 ≥0 ⇒ x ≤ 1/2.

 

Không có giá trị nào của x thỏa mãn hai điều kiện này nên phương trình vô nghiệm.

Đáp án: D

4 tháng 3 2019

Lười làm lắm cứ xét từng khoản là được

Đầu tiên giải bất thứ nhất

Ở bất thứ 2 xét 2 trường hợp

- TH 1: \(m\le0\)

- TH2: \(m>0\)

   + \(\hept{\begin{cases}m-x^2>0\\x+m< 0\end{cases}}\)

   +\(\hept{\begin{cases}m-x^2< 0\\x+m>0\end{cases}}\)