Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
- Chu kì dao động: \(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{4\pi}=0,5s\)
\(\Delta t=t_1-t_2=\dfrac{7}{48}s\)
Góc vật quét được khi từ thời điểm \(t_1\) đến \(t_2\) : \(\Delta\varphi=\omega\Delta t=4\pi.\dfrac{7}{48}=105^o\)
Tại thời điểm \(t_1\) vật đang có li độ: \(x=5\left(cm\right)=\dfrac{A}{2}\)
+ Với \(t_1\left(1\right)\) ta có, li độ của vật tại thời điểm \(t_1\left(2\right)\)
\(x_1=A.sin\left(15^o\right)=2,59cm\)
+ Với \(t_2\left(1\right)\) ta có, li độ của vật tại thời điểm \(t_2\left(2\right)\)
\(x_2=A.cos\left(15^o\right)=9,66\left(cm\right)\)\(\Rightarrow A\)
+) Chu kì T=0,5(s)
Thời điểm t=0 hoặc t=2s=4T thì vật ở cùng 1 vị trí và cùng 1 trạng thái
Tức là: tại t=0,vật có v>0 và \(a=-\omega^2x=80\pi^2\sqrt{2}\)
\(\Rightarrow x=-5\sqrt{2}=-\frac{A\sqrt{2}}{2}\)
+) Tại \(t=t_1=\frac{T}{8}\), vật ở li độ x=0, v>0
Tại \(t=t_2=\frac{T}{8}+\frac{T}{4}\), vật đi đến li độ x=A
Suy ra quãng đường vật đi được là: \(s=A\)
Tốc độ trung bình (đừng nhầm với vận tốc) của vật là:
\(\overline{v}=\frac{s}{\Delta t}=\frac{10}{0,1875-0,0625}=80\left(\frac{cm}{s}\right)\)
Chọn C
\(\omega=2\pi f=\pi; T=\frac{1}{f}=2\left(s\right)\)
\(t=2,5=T+\frac{T}{4}\)
\(A=\sqrt{x^2+\frac{v^2}{\omega^2}}=4\sqrt{2}\left(cm\right)\)
Suy ra, tại t1=0, vật đang ở li độ \(x=\frac{A\sqrt{2}}{2}\) theo chiều âm
Do đó, tại t=t2, vật đã đi được 1 quãng đường là: \(S=4A+A\sqrt{2}=8+16\sqrt{2}\left(cm\right)\)
Tốc độ trung bình là: \(\overline{v}=\frac{S}{t}=\frac{8+16\sqrt{2}}{2,5}\approx12,25\)
Chọn B
Đáp án A
Hai thời điểm vuông pha nhau, ta có A = x 1 2 + x 2 2 = 5
Chu kì dao động: \(T=\dfrac{2\pi}{\omega}=0,5s\)
Li độ cực đại kế tiếp cách nhau 1 chu kì dao động.
Như vậy, thời điểm kế tiếp li độ đạt cực đại là: \(t_2=0,2+0,5=0,7s\)