K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2022

ĐKXĐ:\(x\ne-3\)

\(-\dfrac{4}{3+x}+5=\dfrac{4x+7}{x+3}\\ \Leftrightarrow\dfrac{-4}{x+3}+\dfrac{5\left(x+3\right)}{x+3}-\dfrac{4x+7}{x+3}=0\\ \Leftrightarrow\dfrac{-4+5x+15-4x-7}{x+3}=0\\ \Rightarrow x+4=0\\ \Leftrightarrow x=-4\left(tm\right)\)

24 tháng 2 2022

giúp mk bài này ạundefined

9 tháng 1 2019

a) \(\dfrac{x^2+5}{25-x^2}=\dfrac{3}{x+5}+\dfrac{x}{x-5}\)

\(\Leftrightarrow\dfrac{x^2+5}{5^2-x^2}=\dfrac{3\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\dfrac{x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}\)

\(\Leftrightarrow\dfrac{x^2+5}{5^2-x^2}=\dfrac{3\left(x-5\right)+x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}\)

\(\Leftrightarrow\dfrac{-\left(x^2+5\right)}{x^2-5^2}=\dfrac{3x-15+x^2+5x}{x^2-5^2}\)

\(\Leftrightarrow\dfrac{-\left(x^2+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{8x-15+x^2}{\left(x-5\right)\left(x+5\right)}\)

\(\Leftrightarrow-\left(x^2+5\right).\left(x-5\right)\left(x+5\right)=\left(x-5\right)\left(x+5\right)\left(8x-15+x^2\right)\)

\(\Leftrightarrow-\left(x^2+5\right)\left(x-5\right)\left(x+5\right)-\left(x-5\right)\left(x+5\right)\left(8x-15+x^2\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+5\right)\left(-x^2-5+8x-15+x^2\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+5\right)\left(-20+8x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+5=0\\-20x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\\x=\dfrac{2}{5}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là S={5,-5,2/5}

9 tháng 3 2019

Mình cảm ơn

1 tháng 5 2018

a) \(\dfrac{\left(x+1\right)^2}{x^2-1}-\dfrac{\left(x-1\right)^2}{x^2-1}=\dfrac{16}{x^2-1}\)

=>\(\left(x+1\right)^2-\left(x-1\right)^2=16\)

=>\(x^2+2x+1-x^2+2x-1=16\)

=>4x=16=>x=4

b)\(\dfrac{12}{x^2-4}-\dfrac{x+1}{x-2}+\dfrac{x+7}{x+2}=0\)

=>\(\dfrac{12}{x^2-4}-\dfrac{\left(x+1\right)\left(x+2\right)}{x^2-4}+\dfrac{\left(x+7\right)\left(x-2\right)}{x^2-4}=0\)

=>\(12-\left(x+1\right)\left(x+2\right)+\left(x+7\right)\left(x-2\right)=0\)

=>\(12-x^2-3x-2+x^2+5x-14=0\)

=>2x-4=0=>2x=4=>x=2

c)\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\)

=>\(\dfrac{12}{8+x^3}=\dfrac{x^3+8}{x^3+8}+\dfrac{x^2-2x+4}{x^3+8}\)

=>\(12=x^3+8+x^2-2x+4\)

=>\(x^3+x^2-2x=0\)

=>\(x^3-x+x^2-x=0\)

1 tháng 5 2018

c)=>\(x\left(x^2-1\right)+x\left(x-1\right)=0\)

=>\(x\left(x-1\right)\left(x+1\right)+x\left(x-1\right)=0\)

=>\(x\left(x-1\right)\left(x+2\right)=0\)

=>x=?

22 tháng 4 2017

Giải bài 41 trang 53 SGK Toán 8 Tập 2 | Giải toán lớp 8

25 tháng 4 2018

Giải bài 41 trang 53 SGK Toán 8 Tập 2 | Giải toán lớp 8

24 tháng 4 2017

Giải bài 7 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8

9 tháng 1 2019

Phương trình bậc nhất một ẩn và cách giảiVậy x = 0 hoặc x = 5/4

(ĐK: x2 - x khác -1)

9 tháng 3 2019

Mình cảm ơn

Giải các phương trình có chứa ẩn ở mẫu sau: a, \(\dfrac{x-3}{x-2}+\dfrac{x+2}{x}=2\) b, \(\left(x-2\right)\left(\dfrac{2}{3}x-6\right)=0\) d, \(\dfrac{x}{x+1}-\dfrac{2x-3}{x-1}=\dfrac{2x+3}{x^2-1}\) f, \(\dfrac{x-1}{x}+\dfrac{x-2}{x+1}=2\) g, \(\dfrac{x}{x-1}+\dfrac{x-1}{x}=2\) h, \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\) i, \(\dfrac{2}{x+1}-\dfrac{3}{x-1}=5\) j, \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\) k, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x-3}=1\) l,...
Đọc tiếp

Giải các phương trình có chứa ẩn ở mẫu sau:

a, \(\dfrac{x-3}{x-2}+\dfrac{x+2}{x}=2\)

b, \(\left(x-2\right)\left(\dfrac{2}{3}x-6\right)=0\)

d, \(\dfrac{x}{x+1}-\dfrac{2x-3}{x-1}=\dfrac{2x+3}{x^2-1}\)

f, \(\dfrac{x-1}{x}+\dfrac{x-2}{x+1}=2\)

g, \(\dfrac{x}{x-1}+\dfrac{x-1}{x}=2\)

h, \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

i, \(\dfrac{2}{x+1}-\dfrac{3}{x-1}=5\)

j, \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)

k, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x-3}=1\)

l, \(\dfrac{2}{x+1}-\dfrac{1}{xx-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)

m, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)

n, \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)

o, \(\dfrac{x-2}{x+2}+\dfrac{3}{x-2}=\dfrac{x^2-11}{x^2-4}\)

p, \(\dfrac{x+4}{x+1}+\dfrac{x}{x-1}=\dfrac{2x^2}{x^2-1}\)

z, \(\dfrac{2x}{x-1}+\dfrac{4}{x^2+2x-3}=\dfrac{2x-5}{x+3}\)

q, \(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\)

r, \(\dfrac{1}{x-3}+2=\dfrac{5}{x-1}+x\)

s, \(\dfrac{2}{x^2+4x-21}=\dfrac{3}{x-3}\)

3