Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Diện tích hình quạt $OAB$ là:
$\frac{120}{360}.\pi R^2=\frac{\pi. R^2}{3}$
Đáp án C.
a)Với m=-3 phương trình trở thành:
x2-4x+(-3)2-3.3=0
<=>x2-4x=0
<=>x(x-4)=0
<=>x=0 hoặc x=4
Vậy m=-3 thì tập nghiệm phương trình S={0;4}
b)Ta có: \(\Delta\)'=22-m2-3m=-m2-3m+4=(1-m)(m+4)
Để phương trình có nghiệm thì \(\Delta'\ge0\)<=>(1-m)(m+4)\(\ge0\)
<=>\(\left\{{}\begin{matrix}1-m\ge0\\m+4\ge0\end{matrix}\right.\)hoặc\(\left\{{}\begin{matrix}1-m\le0\\m+4\le0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}m\le1\\m\ge-4\end{matrix}\right.\)hoặc\(\left\{{}\begin{matrix}m\ge1\\m\le-4\end{matrix}\right.\)(L)
Với -4\(\le\)m\(\le\)1 thì phương trình có nghiệm
Nếu đề sai và đề đúng là x12+x22=6 thì biến đổi thành (x1+x2)2-2x1x2=6 và thay viet vào.
Còn nếu đề này đúng thì chỉ có cách là tính từng x1 và x2 theo m bằng công thức nghiệm và thay vào(mình không làm vì dạng như vậy hiếm gặp và mình đoán là đề sai)
a) khi m=3 phương trình trở thành x2-4x=0\(\Leftrightarrow\)x1=0;x2=4
b)Xét\(\Delta\) phảy =(-2)2-(m2+3m)=-m2-3m+4
Do pt có nghiệm nên \(\Delta\) phảy \(\ge\) 0 suy ra -4\(\le\) m\(\le\) 1
Theo Viet ta có x1+x2=4 suy ra x2=4-x1 suy ra x12+4-x1=6 suy ra x1=2 hoặc x1=-1
suy ra x2=2 hoặc x2=5
mà x1x2=m2+3m nên thay 2 cặp nghiệm vào tìm m rồi đối chiếu với đk suy ra các giá trị của m
\(\sin^4a.\left(3-2\sin^2a\right)+\cos^4a\left(3-2\cos^2a\right)\)
\(=3\sin^4a-2\sin^6a+3\cos^4a-2\cos^6a\)
\(=3\left(\sin^4a+\cos^4a\right)-2\left(\sin^6a+\cos^6a\right)\)
\(=3\left(\left(\sin^2a\right)^2+\left(\cos^2a\right)^2\right)-2\left(\left(\sin^2a\right)^3+\left(\cos^2a\right)^3\right)\)
\(=3.1-2\left(sin^2a+\cos^2a\right)\left(\sin^4-sin^2.\cos^2+\cos^4\right)\)
\(=3-2.1\left(\left(\sin^2a\right)^2+\left(\cos^2a\right)^2\right).\left(-\sin^2.\cos^2\right)\)
\(=3-2\left(-\sin^2.\cos^2\right)\)
9.3
\(pt:x^2+4x-1\)
\(\Delta=4^2-4.1.\left(-1\right)=20\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{-4+\sqrt{20}}{2}=-2+\sqrt{5}\\x_2=\frac{-4-\sqrt{20}}{2}=-2-\sqrt{5}\end{matrix}\right.\)
\(a.A=\left|x_1\right|+\left|x_2\right|=\left|-2+\sqrt{5}\right|+\left|-2-\sqrt{5}\right|=-2+\sqrt{5}+2+\sqrt{5}=2\sqrt{5}\)
b. Theo hệ thức Vi-et:
\(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1.x_2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x^2_2=16-2x_1x_2=16-2.1=14\\x_1^2x_2^2=1\end{matrix}\right.\)
\(B=x_1^2\left(x_1^2-7\right)+x_2^2\left(x_2^2-7\right)=x_1^4-7x_1^2+x_2^4-7x^2_2=\left(x_1^2\right)^2+\left(x_2^2\right)^2-7\left(x^2_1+x^2_2\right)=\left(x^2_1+x^2_2\right)^2-2x_1^2x_2^2-7\left(x_1^2+x_2^2\right)=14^2-2.1-7.14=96\)
9.1 Để phương trình có hai nghiệm phân biệt thì :
\(\Delta'=2^2-2=2>0\)
Theo hệ thức Viei, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2\end{matrix}\right.\)
a) \(S=\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1.x_2}{x_1+x_2}=\frac{2}{4}=\frac{1}{2}\)
b) \(Q=\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1.x_2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{4^2-2.2}{2}=6\)
c) \(K=\frac{1}{x_1^3}+\frac{1}{x_2^3}=\frac{\left(x_1+x_2\right)(\left(x_1+x_2\right)^2-3xy)}{\left(x_1.x_2\right)^3}=5\)
\(G=\frac{x_1}{x_2^2}+\frac{x_2}{x_1^2}=\frac{\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)}{\left(x_1x_2\right)^2}=10\)