K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

- Muốn cộng hai phân thức cùng mẫu, ta cộng các tử với nhau và giữ nguyên mẫu.

- Muốn cộng hai phân thức khác mẫu, ta quy đồng mẫu thức rồi cộng các phân thức cùng mẫu vừa tìm được.

\(\dfrac{3x}{x^3-1}+\dfrac{x-1}{x^2+x+1}\)

\(=\dfrac{3x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+x^2-2x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)


\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{1}{x-1}\)

21 tháng 4 2017

Giải bài 22 trang 46 Toán 8 Tập 1 | Giải bài tập Toán 8

30 tháng 11 2021

Giải bài 22 trang 46 Toán 8 Tập 1 | Giải bài tập Toán 8

23 tháng 2 2019

- Qui tắc cộng hai phân thức cùng mẫu:

    Muốn cộng hai phân thức có cùng mẫu thức, ta cộng các tử thức với nhau và giữ nguyên mẫu thức.

- Qui tắc cộng hai phân thức khác mẫu:

    Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.

- Làm tính cộng:

Để học tốt Toán 8 | Giải toán lớp 8

 

14 tháng 11 2017

a) Tìm MTC: x3 – 1 = (x – 1)(x2 + x + 1)

Nên MTC = (x – 1)(x2 + x + 1)

Nhân tử phụ:

(x3 – 1) : (x3 – 1) = 1

(x – 1)(x2 + x + 1) : (x2 + x + 1) = x – 1

(x – 1)(x2+ x + 1) : 1 = (x – 1)(x2 + x + 1)

Qui đồng:

Giải bài 16 trang 43 Toán 8 Tập 1 | Giải bài tập Toán 8

b) Tìm MTC: x + 2

2x – 4 = 2(x – 2)

6 – 3x = 3(2 – x)

MTC = 6(x – 2)(x + 2)

Nhân tử phụ:

6(x – 2)(x + 2) : (x + 2) = 6(x – 2)

6(x – 2)(x + 2) : 2(x – 2) = 3(x + 2)

6(x – 2)(x + 2) : -3(x – 2) = -2(x + 2)

Qui đồng:

Giải bài 16 trang 43 Toán 8 Tập 1 | Giải bài tập Toán 8

click mh nha
17 tháng 11 2017

Bạn giỏi quá !!!

28 tháng 6 2017

Phép cộng các phân thức đại số

Phép cộng các phân thức đại số

21 tháng 4 2017

*Muốn quy đồng mẫu thức nhiều phân thức ta làm như sau:

-Phân tích các mẫu thức thành nhân tử rồi tìm ẫu tức chung.

-Tìm nhân tử phụ của mỗi mẫu thức.

-Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

*Bài tập:

\(\dfrac{x}{x^2+2x+1}và\)\(\dfrac{3}{5x^2-5}\)

-Ta có:

x2+2x+1=(x+1)2=(x+1)(x+1)

5x2-5=5(x2-1)=5(x-1)(x+1)

\(\Rightarrow\)MTC:5(x-1)(x+1)(x+1)

-NTP:5(x-1)(x+1)(x+1):(x+1)(x+1)=5(x-1)

5(x-1)(x+1)(x+1):5(x-1)(x+1)=x+1

-Quy đồng mẫu thức:

\(\dfrac{x}{\left(x+1\right)\left(x+1\right)}\)=\(\dfrac{5x\left(x-1\right)}{5\left(x-1\right)\left(x+1\right)\left(x+1\right)}\)

\(\dfrac{3}{5\left(x-1\right)\left(x+1\right)}=\dfrac{3\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)\left(x+1\right)}\)

28 tháng 6 2017

Rút gọn phân thức

Rút gọn phân thức

21 tháng 4 2017

Giải bài 20 trang 44 Toán 8 Tập 1 | Giải bài tập Toán 8

29 tháng 11 2017

Tại sao lại là x+2 và x-2

a: \(=\dfrac{1-2x+3+2y+2y-4}{6x^3y}=\dfrac{-2x+4y}{6x^3y}=\dfrac{-2\left(x-2y\right)}{6x^3y}=\dfrac{-x+2y}{3x^3y}\)

b: \(=\dfrac{x^2-2+2-x}{x\left(x-1\right)^2}=\dfrac{x\left(x-1\right)}{x\left(x-1\right)^2}=\dfrac{1}{x-1}\)

c: \(=\dfrac{3x+1+x^6-3x}{x^2-3x+1}\)

\(=\dfrac{x^6+1}{x^2-3x+1}\)

d: \(=\dfrac{x^2+38x+4+3x^2-4x-2}{2x^2+17x+1}\)

\(=\dfrac{4x^2+34x+2}{2x^2+17x+1}=2\)