Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phép trừ các phân thức đại số :
A – B = A + (-B)
Một số qui tắc đổi dấu :
- A – B = – ( B – A)
Quy tắc :
Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau :
Muốn nhân hai phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau:
- Muốn cộng hai phân thức cùng mẫu, ta cộng các tử với nhau và giữ nguyên mẫu.
- Muốn cộng hai phân thức khác mẫu, ta quy đồng mẫu thức rồi cộng các phân thức cùng mẫu vừa tìm được.
\(\dfrac{3x}{x^3-1}+\dfrac{x-1}{x^2+x+1}\)
\(=\dfrac{3x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+x^2-2x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{1}{x-1}\)
- Qui tắc cộng hai phân thức cùng mẫu:
Muốn cộng hai phân thức có cùng mẫu thức, ta cộng các tử thức với nhau và giữ nguyên mẫu thức.
- Qui tắc cộng hai phân thức khác mẫu:
Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
- Làm tính cộng:
- quy tắc nhân đơn thức với đa thức:Muốn nhân một đơn thức với một đa thức ta nhân đơn thức với từng số hạng của đa thức rồi cộng các tích với nhau.
- quy tắc nhân đa thức với đa thức:Muốn nhân một đa thưc với một đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
Quy tắc nhân đơn thức với đa thức:
Muốn nhân một đơn thức với một đa thức ta nhân đơn thức với từng số hạng của đa thức rồi cộng các tích với nhau.
Công thức:
Cho A, B, C, D là các đơn thức, ta có: A(B + C - D) = AB + AC - AD.
2. Nhắc lại các phép tính về lũy thừa:
an = a . a . a … a (a ∈ Q, n ∈ N*)
a0 = 1 (a ≠ 0)
an . am = an + m
an : am = an – m (n ≥ m)
(am)n = am . n
Muốn chia phân thức \(\dfrac{A}{B}\) cho phân thức \(\dfrac{C}{D}\) khác 0, ta nhân \(\dfrac{A}{B}\) với phân thức nghịch đảo \(\dfrac{C}{D}\).
\(\dfrac{A}{B}:\dfrac{C}{D}=\dfrac{A}{B}\cdot\dfrac{D}{C}\) với \(\dfrac{C}{D}\) ≠ 0