Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì O, O’ và B thẳng hàng nên: O’B < OB => O’ nằm giữa O và B
Ta có: OO’ = OB - O’B
Vậy đường tròn (O’) tiếp xúc với đường tròn (O) tại B
a: OI+IB=OB
=>OI=OB-IB
=>\(OI=R-r\)
=>Hai đường tròn (O) và (I) tiếp xúc trong với nhau tại B
b: Ta có: ΔODE cân tại O
mà OH là đường cao
nên H là trung điểm của DE
Xét tứ giác ADCE có
H là trung điểm chung của AC và DE
=>ADCE là hình bình hành
Hình bình hành ADCE có AC\(\perp\)DE
nên ADCE là hình thoi
c: Xét (I) có
ΔCKB nội tiếp
CB là đường kính
Do đó: ΔCKB vuông tại K
=>CK\(\perp\)KB tại K
=>CK\(\perp\)DB tại K
Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>AE\(\perp\)BE tại E
Ta có: ADCE là hình thoi
=>AE//CD
mà AE\(\perp\)EB
nên CD\(\perp\)EB
Xét ΔDEB có
BH,DC là các đường cao
BH cắt DC tại C
Do đó: C là trực tâm của ΔDEB
=>EC\(\perp\)DB
mà CK\(\perp\)DB
và EC,CK có điểm chung là C
nên E,C,K thẳng hàng
d:
Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
Xét tứ giác DHCK có \(\widehat{DHC}+\widehat{DKC}=90^0+90^0=180^0\)
nên DHCK là tứ giác nội tiếp
=>\(\widehat{HKC}=\widehat{HDC}\)
mà \(\widehat{HDC}=\widehat{ADH}\)(DH là phân giác của góc ADC do ADCE là hình thoi)
nên \(\widehat{HKC}=\widehat{ADH}\)
mà \(\widehat{ADH}=\widehat{ABD}\left(=90^0-\widehat{DAB}\right)\)
nên \(\widehat{HKC}=\widehat{ABD}\)
Ta có: IC=IK
=>ΔICK cân tại I
=>\(\widehat{ICK}=\widehat{IKC}\)
\(\widehat{HKI}=\widehat{HKC}+\widehat{IKC}\)
\(=\widehat{ABD}+\widehat{ICK}\)
\(=\widehat{KBC}+\widehat{KCB}=90^0\)
=>HK\(\perp\)KI tại K
=>HK là tiếp tuyến tại K của (I)
A D E K C O O' B H
a) Ta có : OB - O'B = OO'
=> đường tròn (O) và (O'O tiếp xúc trong
b) Ta có : \(OA\perp DE\left(gt\right)\)
=> HD = HE hay H là trung điểm của DE
Theo (gt) : HA = HC
T/g ADCE có 2 đường chéo vuông góc với nhau tại trung điểm mỗi đường
=> T/g ADCE là hình thoi
c) Xét tam giác KBC có :
O'K = O'B = O'C (=bk)
\(\Rightarrow O'K=\frac{1}{2}BC\)
=> Tam giác KBC vuông tại K => \(CK\perp DB\left(1\right)\)
Xét tam giác ADB có :
OD = OA = OB ( =bk )
\(\Rightarrow OD=\frac{1}{2}AB\)
=> Tam giác ADB vuông tại D \(\Rightarrow AD\perp DB\left(2\right)\)
Từ (1) và (2) => CK // AD (*)
Theo ( c/m câu a ) : Tứ giác ADCE là hình thoi
=> CE // AD ( ** )
Từ (*) và (**) => CE và CK là 2 đường thẳng trùng nhau
Vậy : 3 điểm E , C , K thẳng hàng ( đpcm )
B A C O D E K
a. hai đường tròn tiếp xúc trong
b.ADCE là tứ giác thoi do có hai đường chéo vuông góc vcowis nhau tại trung điểm của mỗi đường
c. ta dễ thấy AD//CẺ mà AE vuông gó c với BD nên CE vuông BD
mà CK cũng vuông góc với BD nến C,K,E thẳng hàng
d. ta có do tam giác EKD vuông nên \(HK^2=HD^2=HA.HB=HC.HB\)
do \(HK^2=HC.HB\) nên HK là tiếp tuyến của O'
Ta có: R < OA < 3R ⇔ 2R – R < OA < 2R + R
Suy ra hai đường tròn (O ; R) và (A ; 2R) cắt nhau
Gọi O là tâm đường tròn, H là chân đường vuông góc hạ từ O đến đường thẳng d
⇒ Độ dài OH là khoảng cách từ O đến đường thẳng d
Ta có: OH = 3cm < R = 5 cm ⇒ d cắt (O) tại 2 điểm phân biệt
a) Ta có: OO' = OB – O'B
⇒ Hai đường tròn (O) và (O') tiếp xúc trong tại B