Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) 2x2y - 4xy2 + 6xy
= 2xy( x - 2y + 3 )
b) 4x3y2 - 8x2y3 + 2x4y
= 2x2y( 2xy - 4y2 + x2 )
c) 9x2y3 - 3x4y2 - 6x3y2 + 18y4
= 3y2( 3x2y - x4 - 2x3 + 6y2 )
d) 7x2y2 - 21xy2z + 7xyz - 14xy
= 7xy( xy - 3yz + z - 2 )
# Học tốt #
\(a,4x^4-8x^3+4x^2\)
\(=4x^2\cdot\left(x^2-2x+1\right)\)
\(=4x^2\cdot\left(x-1\right)^2\)
\(b,x^2-y^2+5\cdot\left(y-x\right)\)
\(=\left(x-y\right)\cdot\left(x+y\right)-5\cdot\left(x-y\right)\)
\(=\left(x-y\right)\cdot\left(x+y-5\right)\)
\(c,3x^2-6xy+3y^2-12z^2\)
\(=3\cdot\left(x^2-2xy+y^2-4x^2\right)\)
\(=3\cdot\left[\left(x-y\right)^2-\left(2x\right)^2\right]\)
\(=3\cdot\left(x-y-2x\right)\cdot\left(x-y+2x\right)\)
1. Phân tích đa thức thành nhân tử:
a)\(4x^2-6x=2x\left(2x-3\right)\)
b)\(x^3-2x^2+5x=x\left(x^2-2x+5\right)\)
c)\(-3x-6xy+5x=2x-6xy=2x\left(1-3y\right)\)
2. Phân tích đa thức thành nhân tử:
a)\(2x^2y-4xy^2+6xy=2xy\left(x-2y+3\right)\)
b)\(4x^3y^2-8x^2y^3+2x^4y=2x^2y\left(2xy-4y^2+x^2\right)\)c)\(7x^2y^2-21xy^2z+7xyz-14xy=7xy\left(xy-3yz+z-2\right)\)
\(x^2-2xy+y^2-a^2+4ab-4b^2\)
\(=\left(x-y\right)^2-\left(a-2b\right)^2\)
\(=\left(x-y-a+2b\right)\left(x-y+a-2b\right)\)
hk tốt
^^
a) Đặt A=(x+2)(x+3)(x+4)(x+5)-24
= (x+2)(x+5)(x+3)(x+4)-24
= (x^2+7x+10)(x^2+7x+12)-24
Đặt x^2+7x+11 = a thay vào A ta được :
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2)
Thế a vào (2) ta được :
A=(x^2+7x+11-5)(x^2+7x+11+5)
= (x^2+7x+6)(x^2+7x+16)
b) = (x2+8x+7)(x2+8x+15)+15
Đặt X=x2+8x+11
f(x) = (X-4)(X+4)+15
= X2-16+15
= X2-12
= (X-1)(X+1)
=> f(x)= (x2+8x+11-1)(x2+8x+11+1)
f(x) = (x2+8x+10)(x2+8x+12)
Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:
f(x) = (x2+8x+10)(x2+8x+12)
= (x2+8x+10)[(x2+2x)+(6x+12)]
= (x2+8x+10)[x(x+2)+6(x+2)]
= (x+2)(x+6)(x2+8x+10)
d) 2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)
Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có một nhân tử là x+1 nên 2x3 + x2 - 5x - 4 = (x+1)(2x2-x-4)
Vậy 2x4 - 3x3 - 7x2 + 6x + 8 = (x-2)(x+1)(2x2-x-4)
a) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left[\left(x-1\right)\left(x+2\right)\right].\left[x\left(x+1\right)\right]=24\)
\(=\left(x^2+2x-x-2\right)\left(x^2+x\right)=24\)
\(=\left(x^2+x-2\right)\left(x^2+x\right)=24\)
\(=\left[\left(x^2+x-1\right)-1\right].\left[\left(x^2+x-1\right)+1\right]=24\)
\(=\left(x^2+x-1\right)^2-1=24\)
\(=\left(x^2+x-1\right)^2=25\)
xin lỗi mk chỉ làm được đến đây thôi cậu làm tiếp nhé
Mình viết xuôi theo dạng ax2 + bx + c nhé ;-; cho dễ làm
a) 2x2 + 7x + 3 = 2x2 + x + 6x + 3 = x( 2x + 1 ) + 3( 2x + 1 ) = ( 2x + 1 )( x + 3 )
b) 3x2 - 8x + 4 = 3x2 - 6x - 2x + 4 = 3x( x - 2 ) - 2( x - 2 ) = ( x - 2 )( 3x - 2 )
c) 3x2 - 7x + 2 = 3x2 - 6x - x + 2 = 3x( x - 2 ) - ( x - 2 ) = ( x - 2 )( 3x - 1 )
d) -6x2 + 7x - 2 = -6x2 + 3x + 4x - 2 = -3x( 2x - 1 ) + 2( 2x - 1 ) = ( 2x - 1 )( 2 - 3x )
e) -3x2 + 7x - 2 = -3x2 + 6x + x - 2 = -3x( x - 2 ) + ( x - 2 ) = ( x - 2 )( 1 - 3x )
f) 2x2 - 5x + 2 = 2x2 - 4x - x + 2 = 2x( x - 2 ) - ( x - 2 ) = ( x - 2 )( 2x - 1 )
g) 3x2 - 8x + 4 = 3x2 - 6x - 2x + 4 = 3x( x - 2 ) - 2( x - 2 ) = ( x - 2 )( 3x - 2 )
h) 6x2 - 11x + 3 = 6x2 - 2x - 9x + 3 = 2x( 3x - 1 ) - 3( 3x - 1 ) = ( 3x - 1 )( 2x - 3 )
i) 2x2 + 3x - 27 = 2x2 - 6x + 9x - 27 = 2x( x - 3 ) + 9( x - 3 ) = ( x - 3 )( 2x + 9 )
j) 4x2 - 5x + 1 = 4x2 - 4x - x + 1 = 4x( x - 1 ) - ( x - 1 ) = ( x - 1 )( 4x - 1 )
4x4 - 9x2
= 4x2 . x2 - 9x2
= (4x2 - 9)x2
Ko chắc đâu bạn ak!
\(4x^4-9x^2\)
\(=\left(2x^2\right)^2-\left(3x\right)^2\)
\(=\left(2x^2-3x\right)\left(2x^2+3x\right)\)