K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

4x4 - 9x2

= 4x2 . x2 - 9x2 

= (4x- 9)x2

Ko chắc đâu bạn ak!

17 tháng 8 2019

\(4x^4-9x^2\)

\(=\left(2x^2\right)^2-\left(3x\right)^2\)

\(=\left(2x^2-3x\right)\left(2x^2+3x\right)\)

Bài làm

a) 2x2y - 4xy2 + 6xy

= 2xy( x - 2y + 3 )

b) 4x3y2 - 8x2y+ 2x4y

= 2x2y( 2xy - 4y2 + x2 )

c) 9x2y- 3x4y- 6x3y+ 18y4 

= 3y2( 3x2y - x4 - 2x3 + 6y2 )

d) 7x2y- 21xy2z + 7xyz - 14xy

= 7xy( xy - 3yz + z - 2 )

# Học tốt #

8 tháng 10 2019

\(a,4x^4-8x^3+4x^2\)

\(=4x^2\cdot\left(x^2-2x+1\right)\)

\(=4x^2\cdot\left(x-1\right)^2\)

\(b,x^2-y^2+5\cdot\left(y-x\right)\)

\(=\left(x-y\right)\cdot\left(x+y\right)-5\cdot\left(x-y\right)\)

\(=\left(x-y\right)\cdot\left(x+y-5\right)\)

\(c,3x^2-6xy+3y^2-12z^2\)

\(=3\cdot\left(x^2-2xy+y^2-4x^2\right)\)

\(=3\cdot\left[\left(x-y\right)^2-\left(2x\right)^2\right]\)

\(=3\cdot\left(x-y-2x\right)\cdot\left(x-y+2x\right)\)

3 tháng 7 2018

1. Phân tích đa thức thành nhân tử:

a)\(4x^2-6x=2x\left(2x-3\right)\)

b)\(x^3-2x^2+5x=x\left(x^2-2x+5\right)\)

c)\(-3x-6xy+5x=2x-6xy=2x\left(1-3y\right)\)

2. Phân tích đa thức thành nhân tử:

a)\(2x^2y-4xy^2+6xy=2xy\left(x-2y+3\right)\)

b)\(4x^3y^2-8x^2y^3+2x^4y=2x^2y\left(2xy-4y^2+x^2\right)\)c)\(7x^2y^2-21xy^2z+7xyz-14xy=7xy\left(xy-3yz+z-2\right)\)

29 tháng 9 2018

\(x^2-2xy+y^2-a^2+4ab-4b^2\)

\(=\left(x-y\right)^2-\left(a-2b\right)^2\)

\(=\left(x-y-a+2b\right)\left(x-y+a-2b\right)\)

hk tốt

^^

4 tháng 9 2017

a) Đặt A=(x+2)(x+3)(x+4)(x+5)-24 
= (x+2)(x+5)(x+3)(x+4)-24 
= (x^2+7x+10)(x^2+7x+12)-24 
Đặt x^2+7x+11 = a thay vào A ta được : 
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2) 
Thế a vào (2) ta được : 
A=(x^2+7x+11-5)(x^2+7x+11+5) 
= (x^2+7x+6)(x^2+7x+16) 

b)  = (x2+8x+7)(x2+8x+15)+15

        Đặt X=x2+8x+11

   f(x) = (X-4)(X+4)+15

         = X2-16+15

         = X2-12

         = (X-1)(X+1)

=> f(x)= (x2+8x+11-1)(x2+8x+11+1)

     f(x) = (x2+8x+10)(x2+8x+12)

Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:

     f(x) = (x2+8x+10)(x2+8x+12)

           = (x2+8x+10)[(x2+2x)+(6x+12)]

           = (x2+8x+10)[x(x+2)+6(x+2)]

           = (x+2)(x+6)(x2+8x+10)

   d)  2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)

Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có một nhân tử là x+1  nên 2x3 + x2 - 5x - 4 = (x+1)(2x2-x-4)

Vậy 2x4 - 3x3 - 7x2 + 6x + 8  = (x-2)(x+1)(2x2-x-4)

4 tháng 9 2017

  a) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

 \(=\left[\left(x-1\right)\left(x+2\right)\right].\left[x\left(x+1\right)\right]=24\)

 \(=\left(x^2+2x-x-2\right)\left(x^2+x\right)=24\)

 \(=\left(x^2+x-2\right)\left(x^2+x\right)=24\)

 \(=\left[\left(x^2+x-1\right)-1\right].\left[\left(x^2+x-1\right)+1\right]=24\)

 \(=\left(x^2+x-1\right)^2-1=24\)

 \(=\left(x^2+x-1\right)^2=25\)

   xin lỗi mk chỉ làm được đến đây thôi cậu làm tiếp nhé

22 tháng 9 2020

Mình viết xuôi theo dạng ax2 + bx + c nhé ;-; cho dễ làm

a) 2x2 + 7x + 3 = 2x2 + x + 6x + 3 = x( 2x + 1 ) + 3( 2x + 1 ) = ( 2x + 1 )( x + 3 )

b) 3x2 - 8x + 4 = 3x2 - 6x - 2x + 4 = 3x( x - 2 ) - 2( x - 2 ) = ( x - 2 )( 3x - 2 )

c) 3x2 - 7x + 2 = 3x2 - 6x - x + 2 = 3x( x - 2 ) - ( x - 2 ) = ( x - 2 )( 3x - 1 )

d) -6x2 + 7x - 2 = -6x2 + 3x + 4x - 2 = -3x( 2x - 1 ) + 2( 2x - 1 ) = ( 2x - 1 )( 2 - 3x )

e) -3x2 + 7x - 2 = -3x2 + 6x + x - 2 = -3x( x - 2 ) + ( x - 2 ) = ( x - 2 )( 1 - 3x )

f) 2x2 - 5x + 2 = 2x2 - 4x - x + 2 = 2x( x - 2 ) - ( x - 2 ) = ( x - 2 )( 2x - 1 )

g) 3x2 - 8x + 4 = 3x2 - 6x - 2x + 4 = 3x( x - 2 ) - 2( x - 2 ) = ( x - 2 )( 3x - 2 )

h) 6x2 - 11x + 3 = 6x2 - 2x - 9x + 3 = 2x( 3x - 1 ) - 3( 3x - 1 ) = ( 3x - 1 )( 2x - 3 )

i) 2x2 + 3x - 27 = 2x2 - 6x + 9x - 27 = 2x( x - 3 ) + 9( x - 3 ) = ( x - 3 )( 2x + 9 )

j) 4x2 - 5x + 1 = 4x2 - 4x - x + 1 = 4x( x - 1 ) - ( x - 1 ) = ( x - 1 )( 4x - 1 )