Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x\left(x+4\right)\left(x+6\right)\left(x+10\right)+128\)
\(=\left[x\left(x+10\right)\right].\left[\left(x+4\right)\left(x+6\right)\right]+128\)
\(=\left(x^2+10x\right)\left(x^2+10x+24\right)+128\)
đặt \(x^2+10x+12=t\)khi đó:
\(A=\left(t-12\right)\left(t+12\right)+128\)
\(=t^2-16=\left(t-4\right)\left(t+4\right)\)
bạn thay trở lại nhé
b) \(x^4+6x^3+7x^2-6x+1\)
\(=x^4+6x^3+9x^2-2x^2-6x+1\)
\(=\left(x^2+3x\right)^2-2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x-1\right)^2\)
d) \(x^7+x^2+1\)
\(=x^7+x^6+x^5-x^6-x^5-x^4+x^4+x^3+x^2-x^3-x^2-x+x^2+x+1\)
\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
e) \(4x^4+81=4x^4+36x^2+81-36x^2=\left(2x^2+9\right)^2-36x^2=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)
bằng phương pháp nào zậy bn????
547675675675678768768789980957457346242645657
\(A=\left(x^2+x\right)^2-14\left(x^2+x\right)+24\)
Đặt \(x^2+x=t\), ta có:
\(A=t^2-14t+24\)
\(=t^2-2t-12t+24\)
\(=t\left(t-2\right)-12\left(t-2\right)\)
\(=\left(t-2\right)\left(t-12\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x-12\right)\)
\(B=\left(x^2+x\right)^2+4x^2+4x-12\)
\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
Đặt \(x^2+x=t\), ta có:
\(B=t^2+4t-12\)
\(=t^2+6t-2t-12\)
\(=t\left(t+6\right)-2\left(t+6\right)\)
\(=\left(t+6\right)\left(t-2\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
Đặt \(x^2+5x+4=t\), ta có:
\(C=t\left(t+2\right)+1\)
\(=t^2+2t+1\)
\(=\left(t+1\right)^2\)
\(=\left(x^2+5x+4+1\right)^2\)
\(=\left(x^2+5x+5\right)^2\)
\(D=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(x^2+8x+7=t\), ta có:
\(D=t\left(t+8\right)+15\)
\(=t^2+8t+15\)
\(=t^2+3t+5t+15\)
\(=t\left(t+3\right)+5\left(t+3\right)\)
\(=\left(t+3\right)\left(t+5\right)\)
\(=\left(x^2+8x+7+3\right)\left(x^2+8x+7+5\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
\(F=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt \(x^2+x+1=t\), ta có:
\(F=t\left(t+1\right)-12\)
\(=t^2+t-12\)
\(=t^2+4t-3t-12\)
\(=t\left(t+4\right)-3\left(t+4\right)\)
\(=\left(t+4\right)\left(t-3\right)\)
\(=\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)
\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(E=x^4+2x^3+5x^2+4x-12\)
\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)
\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)
\(=\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)\)
\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
a)\(3x^2-8x+4\)
\(=3x^2-2x-6x+4\)
\(=x\left(3x-2\right)-2\left(3x-2\right)\)
\(=\left(x-2\right)\left(3x-2\right)\)
b)\(4x^4+81\)
\(=4x^4+36x^2+81-36x^2\)
\(=\left(2x^2+9\right)^2-36x^2\)
\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)
c)\(x^8+98x^4+1\)
\(=\left(x^8+2x^4+1\right)+96x^4\)
\(=\left(x^4+1\right)^2+16x^2\left(x^4+1\right)+64x^4-16x^2\left(x^4+1\right)+32x^4\)
\(=\left(x^4+8x^2+1\right)^2-16x^2\left(x^4-2x^2+1\right)\)
\(=\left(x^4+8x^2+1\right)^2-16x^2\left(x^4-2x^2+1\right)\)
\(=\left(x^4+8x^2+1\right)^2-\left(4x^3-4x\right)^2\)
\(=\left(x^4+4x^3+8x^2-4x+1\right)\left(x^4-4x^3+8x^2+4x+1\right)\)
d)\(x^4+6x^3+7x^2-6x+1\)
\(=x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1\)
\(=x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\)
\(=\left(x^2+3x-1\right)\left(x^2+3x-1\right)\)\(=\left(x^2+3x-1\right)^2\)
a) x4 + 4
=x4+4x2+4-4x2
=(x2+2)2-4x2
=(x2-2x+2)(x2+2x+2)
b) (x + 2)(x + 3)(x + 4)(x + 5) - 24
=[(x+2)(x+5)][(x+3)(x+4)]-24
=(x2+7x+10)(x2+7x+12)-24
=(x2+7x+10)[(x2+7x+10)+2]-24
=(x2+7x+10)2+2(x2+7x+10)-24
=(x2+7x+10)2+2(x2+7x+10)+1-25
=(x2+7x+10+1)2-25
=(x2+7x+11)2-25
=(x2+7x+11-5)(x2+7x+11+5)
=(x2+7x+6)(x2+7x+18)
=(x2+x+6x+6)(x2+7x+18)
=[x.(x+1)+6.(x+1)](x2+7x+18)
=(x+1)(x+6)(x2+7x+18)
lưu ý bài b có nhiều cách
( x+2)(x+5)(x+3)(x+4) -24=
=(x\(^2\)+7x+ 10)(x\(^2\)+7x +12) -24
Đặt (x\(^2\)+7x+ 11)=a ta được
(a-1)(a+1)-24=
= a\(^2\)-1-24=a\(^2\)-25=(a-5)(a+5)
b.4x\(^4\)+81= (2x\(^2\))\(^2\)+ 9\(^2\)+2.9.2x\(^2\)-2.9.2x\(^2\)= ( 2x\(^2\)+9)\(^2\)-36x\(^2\)= ( 2x\(^2\)+9-6x)( 2x\(^2\)+9+6x)