Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(x^5+x^3-x^2-1\)
\(=x^3\left(x^2+1\right)-\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^3-1\right)\)
\(=\left(x^2+1\right)\left(x-1\right)\left(x^2+x+1\right)\)
b)
\(x^2-3x^3-x+3\)
\(=x\left(x-1\right)-3\left(x^3-1\right)\)
\(=x\left(x-1\right)-3\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x-3x^2-3x-3\right)\)
\(=\left(x-1\right)\left(-3x^2-2x-3\right)\)
c)
\(x^2-6x+8\)
\(=x^2-2.x.3+9-1\)
\(=\left(x-3\right)^2-1\)
\(=\left(x-3-1\right)\left(x-3+1\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
d)
\(4x^4-4x^2y^2-8y^4\)
\(=\left(2x^2\right)^2-2.\left(2x^2\right)y^2+y^2-9y^4\)
\(=\left(2x^2-y\right)^2-\left(3y^2\right)^2\)
\(=\left(2x^2-y-3y^2\right)\left(2x^2-y+3y^2\right)\)
a,nhóm x*5 với x*3,x*2 và 1: (x*5+ x*3) - (x*2+1) =x*3.(x*2+1)-(x*2+1) =....., câu b nhóm x*2 và -3x*3,x và 3, câu c bang (x-3)*2-1 =..., câu d đat 4 ra.
a) \(x^5+x^3-x^2-1=x^3\left(x^2+1\right)-\left(x^2+1\right)=\left(x^3-1\right)\left(x^2+1\right)\)
b) \(x^2-3x^3-x+3=x\left(x-1\right)-3\left(x^3-1\right)=x\left(x-1\right)-3\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left[\left(x-3\right)-\left(x^2+x+1\right)\right]=\left(x-1\right)\left(-x^2-4\right)\)c) \(x^2-6x+8=x^2-6x+9-1=\left(x-3\right)^2-1=\left(x-2\right)\left(x-4\right)\)
d) \(4x^4+4x^2y^2-8y^4=4x^4+4x^2y^2+y^4-9y^4=\left(2x^2+y^2\right)^2-9y^4=\left(2x^2+4y^2\right)\left(2x^2-2y^2\right)=2\left(x^2+2y^2\right)2\left(x^2-y^2\right)=4\left(x^2+2y^2\right)\left(x+y\right)\left(x-y\right)\)
\(\left(x^2-1\right)^2-4\left(x^2-1\right)+3=0\)
\(\left(x^2-1\right)\left(x^2-1-4\right)=-3\)
\(\orbr{\begin{cases}x^2-1=-3\\x^2-5=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=-2\\x^2=2\end{cases}}\Rightarrow\orbr{\begin{cases}\left(kotontai\right)\\x=\sqrt{2}\end{cases}}\)
vay \(x=\sqrt{2}\)
(X2-1)2-4(X2-1)+3=0
(X²-1)(X²-1-4)=-3
1,
X²-1=--3
X²=2
X=√2=2
2,
X²-5=-3
X²=-3-5
X²=--2
X=√-2=2
a) x2 - 4 + (x - 2)2 = 0
=> (x - 2)(x + 2) + (x2 - 4x + 4) = 0
x2 + 2x - 2x - 4 + x2 - 4x + 4 = 0
2x2 - 4x = 0
2x(x - 2) = 0
=> 2x = 0 => x = 0
x - 2 = 0 x = 2
a> \(16-5x^2-3\)
\(=-5x^2+16x-3\)
\(=-5x^2+x+15x-3\)
\(=-x\left(5x-1\right)+3\left(5x-1\right)\)
\(=\left(5x-1\right)\left(3-x\right)\)
b> \(x^2-4x-5\)
\(=x^2-5x+x-5\)
\(=\left(x^2+x\right)-\left(5x+5\right)\)
\(=x\left(x+1\right)-5\left(x+1\right)\)
\(=\left(x+1\right)\left(x-5\right)\)
Bài làm:
Ta có: \(x^4+x^3-4x^2+x+1\)
\(=\left(x^4-x^3\right)+\left(2x^3-2x^2\right)-\left(2x^2-2x\right)-\left(x-1\right)\)
\(=x^3\left(x-1\right)+2x^2\left(x-1\right)-2x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+2x^2-2x-1\right)\)
\(=\left(x-1\right)\left[\left(x^3-x^2\right)+\left(3x^2-3x\right)+\left(x-1\right)\right]\)
\(=\left(x-1\right)\left[x^2\left(x-1\right)+3x\left(x-1\right)+\left(x-1\right)\right]\)
\(=\left(x-1\right)\left(x-1\right)\left(x^2+3x+1\right)\)
\(=\left(x-1\right)^2\left(x^2+3x+1\right)\)
\(x^4+x^3-4x^2+x+1\)
<+> \(\left(x^4+x^3\right)+\left(x+1\right)-4x^2\)
<+> \(x^3\left(x+1\right)+\left(x+1\right)-4x^2\)
<+> \(\left(x^3+1\right)\left(x+1\right)-4x^2\)
<+> \(\left(x+1\right)^2.\left(x^2+x+1\right)-4x^2\)