K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

M = x9 - x7 + x6 - x5 - x4 + x3 - x2 + 1

= ( x9 - x7 ) + ( x6 - x4 ) - ( x5 - x3 ) - ( x2 - 1 )

= x7( x2 - 1 ) + x4( x2 - 1 ) - x3( x2 - 1 ) - ( x2 - 1 )

= ( x2 - 1 )( x7 + x4 - x3 - 1 )

= ( x - 1 )( x + 1 )[ x4( x3 + 1 ) - ( x3 + 1 ) ]

= ( x - 1 )( x + 1 )( x3 + 1 )( x4 - 1 )

= ( x - 1 )( x + 1 )( x + 1 )( x2 - x + 1 )( x2 - 1 )( x2 + 1 )

= ( x + 1 )2( x - 1 )( x2 - x + 1 )( x - 1 )( x + 1 )( x2 + 1 )

= ( x + 1 )3( x - 1 )2( x2 + 1 )( x2 - x + 1 )

6 tháng 11 2016

Ta có:

\(x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\)

\(=\left(x^9-x^8\right)+\left(x^8-x^7\right)-\left(x^6-x^5\right)-\left(2x^5-2x^4\right)-\left(x^4-x^3\right)+\left(x^2-x\right)+\left(x-1\right) \)

\(=x^8.\left(x-1\right)+x^7.\left(x-1\right)-x^5.\left(x-1\right)-2x^4.\left(x-1\right)-x^3\left(x-1\right)+x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^8+x^7-x^5-2x^4-x^3+x+1\right)\)

4 tháng 10 2018

xin chào làm ơn đừng trách mk mk sẽ nói cách giải

2 tháng 10 2017

Dùng hằng đẳng thức mình chỉ nhắc thế thôi mệt lắm ko muốn làm

2 tháng 10 2017

a)\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)-9\)

\(=\text{[}\left(x+1\right)\left(x+7\right)\text{]}.\text{[}\left(x+3\right)\left(x+5\right)\text{]}-9\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)-9\)

Đặt \(x^2+8x+11=y\)\(\Rightarrow Bi\text{ểu}th\text{ứ}c:\left(y-4\right)\left(y+4\right)-9\)

\(=y^2-16-9\)

\(=y^2-25\)

\(=\left(y+5\right)\left(y-5\right)\)

Thay \(y=x^2+8x+11\)vào biểu thức ta đc:

\(\left(x^2+8x+16\right)\left(x^2+8x+6\right)\)\(=\left(x+4\right)^2\left(x^2+8x+6\right)\)

3 tháng 9 2018

\(x^{16}+x^8+1\)

\(=x^{16}+2x^8+1-x^8\)

\(=\left(x^8+1\right)^2-x^8\)

\(=\left(x^8-x^4+1\right)\left(x^8+x^4+1\right)\)

\(=\left(x^8-x^4+1\right)\left(x^8+2x^4+1-x^4\right)\)

\(=\left(x^8-x^4+1\right)\left[\left(x^4+1\right)^2-x^4\right]\)

\(=\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)

\(=\left(x^8-x^4+1\right)\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)

1 tháng 11 2016

bài 2 nè

a+b+c = 0

=>(a+b+c)^3 = 0

a^3 + b^3 + c^3 + 3(a+b)(b+c)(a+c) = 0

vì a+b = -c

a+c = -b

b+c = -a

thay vào => a^3 + b^3 + c^3 - 3abc = 0

=> a^3 + b^3 + c^3 = 3abc

1 tháng 11 2016

adsadfsa

a: =4(x-2)(x+1)+4(x-2)^2+(x+1)^2

=(2x-4)^2+2*(2x-4)(x+1)+(x+1)^2

=(2x-4+x+1)^2=(3x-3)^2=9(x-1)^2

b: =x^7(x^2-1)-x^5(x+1)+x^3(x+1)+(x^2-1)

=(x+1)[x^7(x-1)-x^5+x^3+x-1]

=(x+1)[x^7(x-1)-x^3(x-1)(x+1)+(x-1)]

=(x+1)(x-1)(x^7-x^4-x^3+1)

=(x+1)(x-1)(x^3-1)(x^4-1)

=(x+1)(x-1)^2*(x^2+x+1)(x^2+1)(x-1)(x+1)

=(x+1)^2*(x-1)^3*(x^2+1)(x^2+x+1)