Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`4x^3 - 4x^2 - 9x + 9`
`= (4x^3 - 4x^2) - (9x - 9)`
`= 4x^2(x - 1) - 9(x - 1)`
`= (4x^2 - 9)(x - 1)`
____
`x^3 + 6x^2 + 11x + 6`
`= x^3 + x^2 + 5x^2 + 5x + 6x + 6`
`= (x^3 + x^2) + (5x^2 + 5x) + (6x + 6)`
`= x^2*(x + 1) + 5x(x + 1) + 6(x + 1)`
`= (x^2 + 5x + 6)(x+1)`
____
`x^2y - x^3 - 9y + 9x`
`= (x^2y - 9y) - (x^3 - 9x)`
`= y(x^2 - 9) - x(x^2 - 9)`
`= (y - x)(x^2 - 9)`
b: =x^3+x^2+5x^2+5x+6x+6
=(x+1)(x^2+5x+6)
=(x+1)(x+2)(x+3)
c: =x^2(y-x)-9(y-x)
=(y-x)(x^2-9)
=(y-x)(x-3)(x+3)
a: =(4x^3-4x^2)-(9x-9)
=4x^2(x-1)-9(x-1)
=(x-1)(4x^2-9)
=(x-1)(2x-3)(2x+3)
\(x^4+6x^3+13x^2+12x+4\)
\(=x^4+x^3+5x^3+5x^2+8x^2+8x+4x+4\)
\(=x^3\left(x+1\right)+5x^2\left(x+1\right)+8x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+5x^2+8x+4\right)\)
\(=\left(x+1\right)\left(x^3+x^2+4x^2+4x+4x+4\right)\)
\(=\left(x+1\right)\left[x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\right]\)
\(=\left(x+1\right)^2\left(x+2\right)^2\)
1) \(x^2+6y-9-y^2=x^2-\left(y^2-6y+9\right)=x^2-\left(y-3\right)^2=\left(x-y+3\right)\left(x+y-3\right)\)
2) \(9y^2-6y+1-25x^2=\left(3y\right)^2-2.3y+1-\left(5x\right)^2=\left(3y-1\right)^2-\left(5x\right)^2\)
\(=\left(3y-1-5x\right)\left(3y-1+5x\right)\)
3) \(a^2-9+6x-x^2=a^2-\left(x^2-6x+9\right)=a^2-\left(x-3\right)^2=\left(a-x+3\right)\left(a+x-3\right)\)
\(x^2+5x-2=\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)-\frac{25}{4}-2=\left(x+\frac{5}{2}\right)^2-\frac{33}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\left(\frac{\sqrt{33}}{2}\right)^2=\left(x+\frac{5}{2}-\frac{\sqrt{33}}{2}\right)\left(x+\frac{5}{2}+\frac{\sqrt{33}}{2}\right)\)
\(=\left(x+\frac{5-\sqrt{33}}{2}\right)\left(x+\frac{5+\sqrt{33}}{2}\right)\)
\(=x^2+2x\cdot\frac{1}{2}+\frac{1}{4}-\left(\frac{\sqrt{23}}{2}i\right)^2\)
\(=\left(x+\frac{1}{2}\right)^2\)\(-\left(\frac{\sqrt{23}}{2}i\right)^2\)
\(\left(x+\frac{1}{2}-\frac{\sqrt{23}}{2}i\right)\left(x+\frac{1}{2}+\frac{\sqrt[]{23}}{2}i\right)\)
\(x^4+2002x^2-2001x+2002\)
\(=x^4+2002x^2+x-2002x+2002\)
\(=\left(x^4+x\right)+\left(2002x^2-2002x+2002\right)\)
\(=x\left(x^3+1\right)+2002\left(x^2-x+1\right)\)
\(=x\left(x+1\right)\left(x^2-x+1\right)+2002\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left[x\left(x+1\right)+2002\right]\)
\(=\left(x^2-x+1\right)\left(x^2+x+2002\right)\)
\(x^2-\left(a+b\right)xy+aby^2=x^2-axy-bxy+aby^2\)
\(=\left(x^2-axy\right)-\left(bxy-aby^2\right)=x\left(x-ay\right)-by\left(x-ay\right)\)
\(=\left(x-ay\right)\left(x-by\right)\)
\(x^2-6x+9-9y^2=\left(x^2-2\cdot x\cdot3+3^2\right)-\left(3y\right)^2=\left(x-3\right)^2-\left(3y\right)^2\)
\(=\left(x+3y-3\right)\left(x-3y-3\right)\)