Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(a+b\right)+\left(a+b\right)^2\)
\(=\left(a+b\right)\left(1+a+b\right)\)
\(b,4\left(x-y\right)+3\left(x-y\right)^2\)
\(=\left(x-y\right)\left(4+3\left(x-y\right)\right)\)
\(=\left(x-y\right)\left(4+3x-3y\right)\)
\(c,\left(a-b\right)+\left(b-a\right)^2\)
\(=\left(a-b\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left(1+a-b\right)\)
a) \(\left(a+b\right)+\left(a+b\right)^2=\left(a+b\right)\left(1+a+b\right)\)
b) \(4\left(x-y\right)+3\left(x-y\right)^2=\left(x-y\right)\left[4+3.\left(x-y\right)\right]\)
c) \(\left(a-b\right)+\left(b-a\right)^2=\left(a-b\right)+\left(b-a\right)\left(b-a\right)\)
\(=\left(a-b\right)-\left(a-b\right)\left(b-a\right)\)
\(=\left(a-b\right)\left(1-b+a\right)\)
d) \(\left(a-b\right)-\left(b-a\right)^2\)
\(=\left(a-b\right)-\left(b-a\right)\left(b-a\right)\)
\(=\left(a-b\right)+\left(a-b\right)\left(b-a\right)\)
\(=\left(a-b\right)\left(1+b-a\right)\)
e) \(a\left(a-b\right)^2-\left(b-a\right)^3\)
\(=a\left(a-b\right)-\left(a-b\right)\left(b-a\right)^2\)
\(=\left(a-b\right)\left[a-\left(b-a\right)^2\right]\)
f) \(\left(y+z\right)\left(12x^2+6x\right)+\left(y-z\right)\left(12x^2+6x\right)\)
\(=\left(12x^2+6x\right)\left(y+z+y-z\right)\)
\(=\left(12x^2+6x\right)2y\)
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
I don't now
...............
.................
a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)
\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)
\(-2y^3\left(4x^3-xy^2+y^3\right)\)
\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)
\(-8x^3y^3+2xy^5-2y^6\)
\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)
\(-\left(x^3y^3+8x^3y^3\right)\)
\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)
b)
(!) \(2\left(x+y\right)^2-7\left(x+y\right)+5\)
\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)
\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)
\(=\left(2x+2y-5\right)\left(x+y-1\right)\)
(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)
\(=2\left(xy+yz+zx\right)\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(\left(a-b\right)^2-\left(b-a\right)\)
\(=\left(a-b\right)^2+\left(a-b\right)\)
\(=\left(a-b\right)\left(a-b+1\right)\)
\(5\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)\)
\(=\left(a+b\right)\left[5\left(a+b\right)-\left(a-b\right)\right]\)
\(=\left(a+b\right)\left[5a+5b-a+b\right]\)
\(=\left(a+b\right)\left[4a+6b\right]\)