Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(11x+11y-x^2-xy\)
\(=\left(11x+11y\right)-\left(x^2+xy\right)\)
\(=11.\left(x+y\right)-x.\left(x+y\right)\)
\(=\left(x+y\right).\left(11-x\right)\)
b) \(x^2-xy-8x+8y\)
\(=\left(x^2-xy\right)-\left(8x-8y\right)\)
\(=x.\left(x-y\right)-8.\left(x-y\right)\)
\(=\left(x-y\right).\left(x-8\right)\)
Chúc bạn học tốt!
Giải:
a) \(\left(x-5\right)^2-16\)
\(=\left(x-5-4\right)\left(x-5+4\right)\)
\(=\left(x-9\right)\left(x-1\right)\)
b) \(25-\left(3-x\right)^2\)
\(=\left(5-3+x\right)\left(5+3-x\right)\)
\(=\left(2+x\right)\left(8-x\right)\)
c) \(49\left(y-4\right)^2-9\left(y+2\right)^2\)
\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)
\(=\left[7\left(y-4\right)-3\left(y+2\right)\right]\left[7\left(y-4\right)+3\left(y+2\right)\right]\)
\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)
\(=\left(4y-34\right)\left(10y-22\right)\)
d) \(11x+11y-x^2-xy\)
\(=11\left(x+y\right)-x\left(x+y\right)\)
\(=\left(11-x\right)\left(x+y\right)\)
e) \(x^2-xy-8x+8y\)
\(=x\left(x-y\right)-8\left(x-y\right)\)
\(=\left(x-8\right)\left(x-y\right)\)
Vậy ...
\(\left(x-5\right)^2-16\)
\(=\left(x-5\right)^2-4^2\)
\(=\left(x-5-4\right)\left(x-5+4\right)\)
\(=\left(x-9\right)\left(x-1\right)\)
\(25-\left(3-x\right)^2\)
\(=5^2-\left(3-x\right)^2\)
\(=\left(5+3-x\right)\left(5-3+x\right)\)
\(=\left(8-x\right)\left(2+x\right)\)
\(49\left(y-4\right)^2-9\left(y+2\right)^2\)
\(=7^2\left(y-4\right)^2-3^2\left(y+2\right)^2\)
\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)
\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)
\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)
\(=\left(4y-34\right)\left(10y-22\right)\)
a) \(\left(x+y\right)^3-x^3-y^3\)
\(=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-x^2+xy-y^2\right]\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)
\(=3xy\left(x+y\right)\)
b) \(x^2+y^2+2xy+yz+xz\)
\(=\left(x^2+2xy+y^2\right)+\left(yz+xz\right)\)
\(=\left(x+y\right)^2+z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y+z\right)\)
c) \(x^2-10xy-1+25y^2\)
\(=\left(x^2-10xy+25y^2\right)-1\)
\(=\left(x-5y\right)^2-1\)
\(=\left(x-5y-1\right)\left(x-5y+1\right)\)
d) \(ax^2-ax+bx^2-bx+a+b\)
\(=(ax^2+bx^2)-(ax+bx)+(a+b)\)
\(=x^2(a+b)-x(a+b)+(a+b)\)
\(=(a+b)(x^2-x+1)\)
e)\(x^2-2y+3xz+x-2y+3z\)
\(=(x^2+x)-(2xy+2y)+(3xz+3z)\)
\(=x(x+1)-2y(x-1)+3z(x+1)\)
\(=(x+1)(x-2y+3z)\)
f) \(xyz-xy-yz-xz+x+y+z-1\)
\(=(xyz-xy)-(yz-y)-(xz-x)+(z-1)\)
\(=xy(z-1)-y(z-1)-x(z-1)+(z-1)\)
\(=(z-1)(xy-y-x+1)\)
\(=(z-1)[y(x-1)-(x-1)]\)
\(=(z-1)(x-1)(y-1)\)
_Học tốt_
\(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)
\(\Leftrightarrow\left(x+2\right)3x\)
b \(x^8y^8+x^4y^4+1=x^8y^8+2x^4y^4+1-x^4y^4=\left(x^4y^4\right)^2+2x^4y^4+1-\left(x^2y^2\right)^2\)
\(=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2=\left(x^4y^4-x^2y^2+1\right)\left(x^4y^4+x^2y^2+1\right)\)
c \(x^2y+xy^2+xz^2+x^2z+y^2z+yz^2+2xyz=\left(x^2y+x^2z+xyz+xy^2\right)+\left(xz^2+yz^2+xyz+y^2z\right)\)
\(=x\left(xy+xz+yz+y^2\right)+z\left(xz+yz+xy+y^2\right)=\left(x+z\right)\left(xy+xz+yz+y^2\right)\)
\(=\left(x+z\right)\left(x\left(y+z\right)+y\left(y+z\right)\right)=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)
a \(3xyz+x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)=3xyz+xy^2+xz^2+x^2y+yz^2+x^2z+y^2z\)
\(=\left(x^2y+x^2z+xyz\right)+\left(xy^2+xyz+y^2z\right)+\left(xyz+xz^2+yz^2\right)\)
\(=x\left(xy+xz+yz\right)+y\left(xy+xz+yz\right)+z\left(xy+xz+yz\right)=\left(x+y+z\right)\left(xy+xz+yz\right)\)
\(xy+3z+xz+3y\)
\(=\left(xy+3y\right)+\left(xz+3z\right)\)
\(=y\left(x+3\right)+z\left(x+3\right)\)
\(=\left(y+z\right)\left(x+3\right)\)
\(11x-x^2+11y-xy\)
\(=x\left(11-x\right)+y\left(11-x\right)\)
\(=\left(x+y\right)\left(11-x\right)\)
\(xy+3z+xz+3y\)
\(=\left(xy+xz\right)+\left(3y+3z\right)\)
\(=x\left(y+z\right)+3\left(y+z\right)\)
\(=\left(y+z\right)\left(x+3\right)\)
\(11x-x^2+11y-xy\)
\(=\left(11x+11y\right)-\left(x^2+xy\right)\)
\(=11\left(x+y\right)-x\left(x+y\right)\)
\(=\left(x+y\right)\left(11-x\right)\)
a) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)
\(=x^2y+xy^2+xyz+x^2z+xz^2+xyz+y^2z+yz^2\)
\(=xy\left(x+y+z\right)+xz\left(x+z+y\right)+yz\left(y+z\right)\)
\(=\left(x+y+z\right)\left(xy+xz\right)+yz\left(y+z\right)\)
\(=x\left(x+y+z\right)\left(y+z\right)+yz\left(y+z\right)\)
\(=\left(y+z\right)\left(x^2+xy+xz+yz\right)\)
\(=\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]=\left(y+z\right)\left(x+y\right)\left(x+z\right)\)
b) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)
\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xz^2+xyz\right)+\left(y^2z+yz^2+xyz\right)\)
\(=xy\left(x+y+z\right)+xz\left(x+z+y\right)+yz\left(y+z+x\right)\)
\(=\left(x+y+z\right)\left(xy+xz+yz\right)\)
P/s: Sai sót xin bỏ qua.
a)xz-yz -x2 +2xy-y2=(xz-yz)-(x2-2xy+y2)=z(x-y)-(x-y)2=(x-y)(z-x+y)
b) x2+8x+15= (x2+3x)+(5x+15)=x(x+3)+5(x+3)=(x+3)(x+5)
c) x2-x-12=(x2-4x)+(3x-12)=x(x-4)+3(x-4)=(x-4)(x+3)
a) xz - yz - x2 + 2xy - y2
= (xz - yz) - (x2 - 2xy + y2)
= z (x - y) - (x - y)2
= z (x - y) - (x - y) (x - y)
= [z - (x - y)] (x - y)
= (z - x + y) (x - y)
b) x2 + 8x + 15
= x2 + 3x + 5x + 15
= (x2 + 3x) + (5x + 15)
= x (x + 3) + 5 (x + 3)
= (x + 5) (x + 3)
c) x2 - x - 12
= x2 - 4x + 3x - 12
= (x2 - 4x) + (3x - 12)
= x (x - 4) + 3 (x - 4)
= (x + 3) (x - 4)
#Học tốt!!!
~NTTH~
Mai cho bn đấy tui dg định off =))
a)\(11x+11y-x^2-xy\)
\(=\left(11x+11y\right)-\left(x^2+xy\right)\)
\(=11\left(x+y\right)-x\left(x+y\right)\)
\(=\left(11-x\right)\left(x+y\right)\)
b)\(x^2-xy-8x+8y\)
\(=\left(x^2-xy\right)-\left(8x-8y\right)\)
\(=x\left(x-y\right)-8\left(x-y\right)\)
\(=\left(x-8\right)\left(x-y\right)\)
c)\(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)
d)\(x^2+2xy+y^2-xz-yz\)
\(=\left(x^2+2xy+y^2\right)-\left(xz+yz\right)\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
a) \(11x+11y-x^2-xy\)
\(=11\left(x+y\right)-x\left(x+y\right)\)
\(=\left(x+y\right)\left(11-x\right)\)
b) \(x^2-xy-8x+8y\)
\(=x\left(x-y\right)-8\left(x-y\right)\)
\(=\left(x-y\right)\left(x-8\right)\)
c) \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3-y\right)\left(x-3+y\right)\)
d) \(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)