Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=9x-9\sqrt{xy}+4\sqrt{xy}-4y\)
\(=\left(9x-9\sqrt{xy}\right)+\left(4\sqrt{xy}-4y\right)\)
\(=9\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)+4\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(9\sqrt{x}+4\sqrt{y}\right)\)
b)\(=\left(xy+\sqrt{x}.y\right)+\left(\sqrt{x}+1\right)\)
\(=\sqrt{x}y\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)\)
\(=\left(\sqrt{x}+1\right)\left(\sqrt{x}.y+1\right)\)
\(x\sqrt{x}+x-y+y\sqrt{x}-xy\sqrt{x}-xy\sqrt{y}=\left(x\sqrt{y}+y\sqrt{x}\right)+\left(x-y\right)-\left(xy\sqrt{x}+xy\sqrt{y}\right)\)
\(=\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{xy}+\sqrt{x}-\sqrt{y}-xy\right)\)
\(\sqrt{xy}+1+\sqrt{x}+\sqrt{y}\)
=\(\sqrt{x}\left(\sqrt{y}+1\right)+\left(\sqrt{y}+1\right)\)
\(=\left(\sqrt{y}+1\right)\left(\sqrt{x}+1\right)\)
\(xy-y\sqrt{x}+\sqrt{x}-1\)
\(=y\left(x-\sqrt{x}\right)+\left(\sqrt{x}-1\right)\)
\(=y\sqrt{x}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\)
\(\left(\sqrt{x}-1\right)\left(y\sqrt{x}+1\right)\)
a)
Đa thức bậc nhất không phân tích được nhân tử :v
b)
Đặt \(\sqrt{x}=a;\sqrt{y}=b\) Khi đó:
\(x\sqrt{x}+y\sqrt{y}=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
c)
Tương tự câu b) thì ta sẽ có:
\(x\sqrt{x}-27=a^3-27=\left(a-3\right)\left(a^2+3a+9\right)\)
Bài làm:
a) \(9x-5=\left(3\sqrt{x}\right)^2-\sqrt{5}==\left(3\sqrt{x}-\sqrt{5}\right)\left(3\sqrt{x}+\sqrt{5}\right)\)
b) \(x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)
c) \(x\sqrt{x}-27=\left(\sqrt{x}\right)^3-3^3=\left(\sqrt{x}-3\right)\left(x+3\sqrt{x}+9\right)\)
a, \(5+\sqrt{x}+25-x=\left(5+\sqrt{x}\right)+\left(5+\sqrt{x}\right)\left(5-\sqrt{x}\right)=\left(5+\sqrt{x}\right)\left(1+5-\sqrt{x}\right)=\left(5+\sqrt{x}\left(6-\sqrt{x}\right)\right)\)
b, \(xy-x\sqrt{y}+\sqrt{y}-1=x\sqrt{y}\left(\sqrt{y}-1\right)+\sqrt{y}-1=\left(x\sqrt{y}+1\right)\left(\sqrt{y}-1\right)\)
\(B=\left(3\sqrt{x}\right)^2+2.3\sqrt{x}.\sqrt{y}+\sqrt{y}^2=\left(3\sqrt{x}+\sqrt{y}\right)^2\)
Hằng đẳng thức dễ mà bạn: a^2 + 2ab + b^2 = (a+b)^2
Còn điều kiện s b?