\(x^2-xz-9y^2+3yz\)

b) \(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

a, \(x^2-xz-9y^2+3yz\)

\(=\left(x^2-9y^2\right)-\left(xz-3yz\right)\)

\(=\left(x-3y\right)\left(x+3y\right)-3z\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y-3z\right)\)

b, \(x^3-x^2-5x+125\)

\(=x^3+5x^2-6x^2-30x+25x+125\)

\(=x^2\left(x+5\right)-6x\left(x+5\right)+25\left(x+5\right)\)

\(=\left(x^2-6x+25\right)\left(x+5\right)\)

21 tháng 7 2017

câu c nữa..bạn giúp mk đi

13 tháng 10 2019

\(e,-5x+x^2-14\)

\(=x^2+2x-7x-14\)

\(=x\left(x+2\right)-7\left(x+2\right)\)

\(=\left(x+2\right)\left(x-7\right)\)

\(f,x^3+8+6x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+2x+4\right)+6x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+8x+4\right)\)

\(g,15x^2-7xy-2y^2\)

\(=15x^2+3xy-10xy-2y^2\)

\(=3\left(5x+y\right)-2y\left(5x+y\right)\)

\(=\left(5x+y\right)\left(3-2y\right)\)

\(h,3x^2-16x+5\)

\(=3x^2-x-15x+5\)

\(=x\left(3x-1\right)+5\left(3x-1\right)\)

\(=\left(3x-1\right)\left(x+5\right)\)

13 tháng 10 2019

\(a,x^3+2x^2y+xy^2=x\left(x^2+2xy+y^2\right)\)

\(=x\left(x+y\right)^2\)

\(b,4x^2-9y^2+4x-6y\)

\(=4x^2+4x+1-\left(9y^2+6y+1\right)\)

\(=\left(2x+1\right)^2-\left(3y+1\right)^2\)

\(=\left(2x-3y\right)\left(2x+3y+2\right)\)

\(c,-x^2+5x+2xy-5y-y^2\)

\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)

\(=-\left(x-y\right)^2+5\left(x-y\right)\)

\(=\left(x-y\right)\left(y-x+5\right)\)

\(d,x^2+4x-12\)

\(=x^2-2x+6x-12\)

\(=x\left(x-2\right)+6\left(x-2\right)\)

\(=\left(x-2\right)\left(x+6\right)\)

22 tháng 8 2018

xin lỗi bài này mình không biết

6 tháng 10 2018

\(x^2-xz-9y^2+3yz\)

\(=\)\(\left(x^2-9y^2\right)-\left(xz-3yz\right)\)

\(=\)\(\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)

\(=\)\(\left(x-3y\right)\left(x+3y-z\right)\)

Chúc bạn học tốt ~ 

6 tháng 10 2018

\(x^2-xz-9y^2+3yz\)

\(=\left(x^2-9y^2\right)-\left(xz-3yz\right)\)

\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y-z\right)\)

27 tháng 10 2021

helpppppp

3 tháng 7 2018

Câu c) Sử dụng hằng đẳng thức+Đặt biến phụ

Ta có: \(x^2+2xy+y^2-x-y-12\)

\(=\left(x+y\right)^2-\left(x+y\right)-12\)

\(=\left(x+y\right)\left(x+y-1\right)-12\)

Đặt: \(x+y=t\)

\(=t\left(t-1\right)-12\)

\(=t^2-t-12\)

\(=t^2-t-9-3\)

\(=\left(t^2-3^2\right)-\left(t+3\right)\)

\(=\left(t+3\right)\left(t-3\right)-\left(t+3\right)\)

\(=\left(t+3\right)\left(t-4\right)\)Bn tự thế vào nhá. (Bài c) tương tự bài a))

Câu d) Đặt biến phụ

Ta có: \(\left(5x^2-2x\right)^2+2x-5x^2-6\)

\(=\left(5x^2-2x\right)^2-5x^2+2x-6\)

\(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-6\)

\(=\left(5x^2-2x\right)\left(5x^2-2x-1\right)-6\)

Đặt \(t=5x^2-2x\)

\(=t\left(t-1\right)-6\)

\(=t^2-t-6\)

\(=t^2-t-9+3\)

\(=\left(t^2-3^2\right)-\left(t-3\right)\)

\(=\left(t-3\right)\left(t+3\right)-\left(t-3\right)\)

\(=\left(t-3\right)\left(t+2\right)\)Bn tự thế t vào 

3 tháng 7 2018

Câu a) Sử dụng phương pháp đặt biến phụ+hằng đẳng thức

Ta có: \(\left(2x^2+x-2\right)\left(2x^2+x-3\right)-12\)

Đặt: \(t=2x^2+x-2\)

\(=t\left(t-1\right)-12\)

\(=t^2-t-12=t^2-t-9-3\)

\(=\left(t^2-3^2\right)-\left(t+3\right)\)

\(\left(t+3\right)\left(t-3\right)-\left(t+3\right)=\left(t+3\right)\left(t-4\right)\)

Thay t vào: \(\left(2x^2+x+1\right)\left(2x^2+x-6\right)\)

Câu b) Sử dụng hằng đẳng thức+ đặt biến phụ 

Ta có: \(x^2+9y^2-9y-3x+6xy+2\)

\(=\left(x^2+6xy+9y^2\right)-\left(9y+3x\right)+2\)

\(=\left(x+3y\right)^2-3\left(3y+x\right)+2\)

\(=\left(x+3y\right)\left(x+3y-3\right)+2\)

Đặt \(t=x+3y\)

\(=t\left(t-3\right)+2\)

\(=t^2-3t+2\)

\(=\left(t^2-4\right)-\left(3t-6\right)\)

\(=\left(t-2\right)\left(t+2\right)-3\left(t-2\right)\)

\(=\left(t-2\right)\left(t-1\right)\)Khúc sau bn tự thế vào

Còn mấy bài sau đang nghiên cứu

23 tháng 8 2020

a) -x2 + 2x - 1

= -( x2 - 2x + 1 )

= -( x - 1 )2

b) 12y - 36 - y2

= -( y2 - 12y + 36 )

= -( y - 6 )2

c) -x3 + 9x2 - 27x + 27

= -( x3 - 9x2 + 27x - 27 )

= -( x - 3 )3

d) x3 - 6x2 + 9x 

= x( x2 - 6x + 9 )

= x( x - 3 )2

e) a3b - ab3 

= ab( a2 - b2 )

= ab( a - b )( a + b )

f) a2 + 2a + 1 - b2

= a2 + ab + a - ab - b2 - b + a + b + 1

= a( a + b + 1 ) - b( a + b + 1 ) + 1( a + b + 1 )

= ( a - b + 1 )( a + b + 1 )

23 tháng 8 2020

a)\(-x^2+2x-1\) 

\(=-\left(x^2-2x+1\right)\)  

\(=-\left(x-1\right)^2\) 

b) \(12y-36-y^2\)    

\(=-\left(y^2-12y+36\right)\)    

\(=-\left(y^2-2\cdot1\cdot6+6^2\right)\)      

\(=-\left(y-6\right)^2\)        

c) \(-x^3+9x^2-27x+27\)      

\(=-x^3+3x^2+6x^2-18x-9x+27\)      

\(=-x^2\left(x-3\right)+6x\left(x-3\right)-9\left(x-3\right)\)     

\(=\left(x-3\right)\left(-x^2+6x-9\right)\)   

\(=\left(x-3\right)\cdot-\left(x^2-6x+9\right)\)   

\(=\left(x-3\right)\cdot-\left(x^2-2\cdot x\cdot3+3^2\right)\) 

\(=-\left(x-3\right)\left(x-3\right)^2\)                                    

\(=\left(x-3\right)^3\)      

d) \(x^3-6x^2+9\)     

\(=x\left(x^2-6x+9\right)\)    

\(=x\left(x-3\right)^2\)    

e) \(a^3b-ab^3\)     

\(=ab\left(a^2-b^2\right)\)  

\(=ab\left(a-b\right)\left(a+b\right)\)     

f) \(a^2+2a+1-b^2\)    

\(=a^2+2\cdot a\cdot1+1^2-b^2\)    

\(=\left(a+1\right)^2-b^2\)      

\(=\left(a+1-b\right)\left(a+1+b\right)\)

a) = 3x(x-2x+1)

xog a

tốt

Bài làm

a) 3x2 - 6x2 + 3x

= -3x2 + 3x

= 3x( 1 - x )

b) 3x2 + 5x - 3xy - 5y

= ( 3x2 - 3xy ) + ( 5x - 5y )

= 3x( x - y ) + 5( x - y )

= ( x - y )( 3x + 5 )

c) x3 + 2x2 + x

= x( x2 + 2x + 1 )

= x( x2 + 2.x.1 + 12 )

= x( x + 1 )2

d) xy + y2 - x - y

= ( xy - x ) + ( y2 - y )

= x( y - 1 ) + y( y - 1 )

= ( y - 1 )( x +  y )

# Học tốt #