K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

\(x\left(x+2\right)\left(x+3\right)\left(x+5\right)+9=\left[x\left(x+5\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+9=\left(x^2+5x\right)\left(x^2+5x+6\right)+9.Dat:x^2+5x=a\Rightarrow x\left(x+2\right)\left(x+3\right)\left(x+5\right)+9=a\left(a+6\right)+9=a^2+6a+9=\left(a+3\right)^2=\left(x^2+5x+3\right)^2\)

\(\left(x^2-x+1\right)\left(x^2+3x+1\right)+4x^2=\left(x^2+x+1-2x\right)\left(x^2+x+1+2x\right)+4x^2=\left(x^2+x+1\right)^2-\left(2x\right)^2+4x^2=\left(x^2+x+1\right)^2-4x^2+4x^2=\left(x^2+x+1\right)^2\)

17 tháng 8 2016

1)x2-8x-9

= x^2 - 9x +x -9

= x(x+1) - 9 (x+1)

= (x-9) (x+1)

2)x2+3x-18

3)x3-5x2+4x

=x^3 - 4x^2 - x^2 + 4x 

= x^2 (x-1) - 4x(x-1)

= (x^2 - 4x) (x-1)

= x(x-4)(x-1)

4)x3-11x2+30x

5)x3-7x-6

6)x16-64

\(=\left(x^8\right)^2-8^2\)

\(=\left(x^8-8\right)\left(x^8+8\right)\)

7)x3-5x2+8x-4

8)x2-3x+2

= x^2 - 2x - x +2

= x(x-1) -2(x-1)

= (x-2)(x-1)

17 tháng 8 2016

1)   \(\left(x-9\right)\left(x+1\right)\)             2)   \(\left(x-3\right)\left(x+6\right)\)                                           3)   \(x\left(x-4\right)\left(x-1\right)\)

4)    \(x\left(x-6\right)\left(x-5\right)\)         5)\(\left(x-3\right)\left(x+1\right)\left(x+2\right)\)                               6)   ........

7)  \(\left(x-1\right)\left(x-2\right)\left(x-2\right)\)          8)   \(\left(x-2\right)\left(x-1\right)\)

4 tháng 9 2017

a) Đặt A=(x+2)(x+3)(x+4)(x+5)-24 
= (x+2)(x+5)(x+3)(x+4)-24 
= (x^2+7x+10)(x^2+7x+12)-24 
Đặt x^2+7x+11 = a thay vào A ta được : 
A=(a-1)(a+1)=a^2-25 = a^2 - 5^2 = (a-5)(a+5) ( 2) 
Thế a vào (2) ta được : 
A=(x^2+7x+11-5)(x^2+7x+11+5) 
= (x^2+7x+6)(x^2+7x+16) 

b)  = (x2+8x+7)(x2+8x+15)+15

        Đặt X=x2+8x+11

   f(x) = (X-4)(X+4)+15

         = X2-16+15

         = X2-12

         = (X-1)(X+1)

=> f(x)= (x2+8x+11-1)(x2+8x+11+1)

     f(x) = (x2+8x+10)(x2+8x+12)

Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:

     f(x) = (x2+8x+10)(x2+8x+12)

           = (x2+8x+10)[(x2+2x)+(6x+12)]

           = (x2+8x+10)[x(x+2)+6(x+2)]

           = (x+2)(x+6)(x2+8x+10)

   d)  2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4)

Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nhau nên có một nhân tử là x+1  nên 2x3 + x2 - 5x - 4 = (x+1)(2x2-x-4)

Vậy 2x4 - 3x3 - 7x2 + 6x + 8  = (x-2)(x+1)(2x2-x-4)

4 tháng 9 2017

  a) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

 \(=\left[\left(x-1\right)\left(x+2\right)\right].\left[x\left(x+1\right)\right]=24\)

 \(=\left(x^2+2x-x-2\right)\left(x^2+x\right)=24\)

 \(=\left(x^2+x-2\right)\left(x^2+x\right)=24\)

 \(=\left[\left(x^2+x-1\right)-1\right].\left[\left(x^2+x-1\right)+1\right]=24\)

 \(=\left(x^2+x-1\right)^2-1=24\)

 \(=\left(x^2+x-1\right)^2=25\)

   xin lỗi mk chỉ làm được đến đây thôi cậu làm tiếp nhé

22 tháng 8 2017

 bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

22 tháng 7 2016

1not nhac/bai

1) = 3(x-y) +(x+y)(x-y) =(x-y)(x+y+3)

25 tháng 9 2018

1 ) x3 - 2x2 + x

= x( x2 - 2x + 1 )

= x ( x-1)2

2) 4x3 - 25x 

= x ( 4x2 - 25)

= x( 2x-5) ( 2x +5)

25 tháng 9 2018

11)  \(x^2-y^2-4x+4\)

\(=\left(x^2-4x+4\right)-y^2\)

\(=\left(x-2\right)^2-y^2\)

\(=\left(x-y-2\right)\left(x+y-2\right)\)

13)  \(x^4+4=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-4x^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

21 tháng 11 2016

ôi mai dê

21 tháng 11 2016

mấy bài này max dễ bn đăng từng phần 1 mk lm cho

12 tháng 12 2018

\(a,3\left(x+4\right)-x^2-4x\)

\(=3\left(x+4\right)-\left(x^2+4x\right)\)

\(=3\left(x+4\right)-x\left(x+4\right)\)

\(=\left(3-x\right)\left(x+4\right)\)

\(a,3\left(x+4\right)-x^2-4x\)

\(=3\left(x+4\right)-\left(x^2+4x\right)\)

\(=3\left(x+4\right)-x\left(x+4\right)\)

\(=\left(3-x\right),\left(x+4\right)\)

11 tháng 1 2017

b/ 4x+ 4x+ 5x+ 2x + 1

= (4x4 + 4x3 + x2) + 2(2x2 + x) + 1

= (2x2 + x)2 + 2(2x2 + x) + 1

= (2x2 + x + 1)2

c/  x+ x + 1 = (x2 + x + 1)(x6 - x5 + x3 - x2 + 1)

e/ x- 8x + 63 = (x2 - 4x + 7)(x2 + 4x + 9)

11 tháng 1 2017

\(a,...3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)\(=3\left(x^4+x^2+1\right)-\left(\left(x^4+x^2+1\right)+2\left(x^3+x^2+x\right)\right)\)

\(2\left(x^4+x^2+1\right)-2\left(x^3+x^2+x\right)=2\left(x^4-x^3-x+1\right)\) \(2\left(x^3\left(x-1\right)-\left(x-1\right)\right)=2\left(x-1\right)\left(x^3-1\right)\)

\(2\left(x-1\right)^2\left(x^2+x+1\right)\)