K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

a) =a2b - ab2 + b2c - bc2 + a2c - ac2

= abc +a2b - ab2 +b2c - bc2 +a2c - ac2 - abc

= (a2b - abc) - (ab2 - b2c) - (bc2 - ac2) - (a2c - abc)

= ab(a - c) - b2(a - c) - c2(b - a) - ac(a - b)

= [ab(a - c) - b2(a - c)] + [c2(a - b) - ac(a - b)]

= (a - c)(ab - b2) + (a - b)(c2 - ac)

= b(a - c)(a - b) + c(a - b)(c - a)

= b(a - c)(a - b) - c(a - b)(a - c)

= (a - c)(a - b)(b - c)

b)= ab2 - ac2 + bc2 - a2b + a2c - b2c

= abc + ab2 - ac2 + bc2 - a2b + a2c - b2c - abc

= (ab2 - abc) + (abc - ac2) - (b2c - bc2) - (a2b - a2c)

= ab(b - c) + ac( b - c) - bc(b - c) - a2(b - c)

= (b - c)(ab + ac - bc - a2)

= (b - c) [(ab - bc) + (ac - a2)]

= (b - c) [b(a - c) +a(c - a)]

= (b - c) [b(a - c) - a(a - c)]

= (b - c)(a - c)(b - a)

c) = ab3 - ac3 + bc3 - a3b + a3c - b3c

= a2bc + ab2c + abc2 + a3b + a2b2 + a2bc - a3c - a2bc - a2c2 + a2c2 + abc2 + ac3 - a2b2

- ab3 - ab2c + ab2c + b3c + b2c2 - abc2 - b2c2 - bc3 - a2bc - ab2c - abc2

= (a2bc + ab2c + abc2) +(a3b + a2b2 + a2bc) - (a3c - a2bc - a2c2) +(a2c2 + abc2 +ac3) -

(a2b2 + ab3 + ab2c) + (ab2c + b3c + b2c2) - (abc2 + b2c2 + bc3) - (a2bc + ab2c + abc2)

= abc(a + b + c) +a2b(a + b + c) - a2c(a + b + c) + ac2(a + b + c) - ab2(a + b + c) + b2c(a + b + c) - bc2(a + b + c) - abc(a + b+ c)

= (a +b +c)(abc + a2b - a2c + ac2 - ab2 + b2c - bc2 - abc)

= (a + b+ c) [(a2b - abc)+(abc - bc2) - (a2c - ac2) - (ab2 - b2c)]

= (a + b + c) [ab(a - c) + bc(a - c) - ac(a - c) - b2(a - c)]

= (a + b + c)(a - c)(ab + bc - ac - b2)

= (a +b + c)(a - c) [(ab - ac) - (b2 - bc)]

= (a + b+ c)(a - c) [a(b - c) - b(b - c)]

= (a + b + c)(a - c)(b - c)(a - b)

 

 

11 tháng 8 2017

trời ơi sao câu c dài thế !!!!! Tui có bài giống vậy nhưng nó ra p/số, còn phải ghi nhiều hơn huhu

17 tháng 7 2019

\(a,\left(a^3-b^3\right)+\left(a-b\right)^2\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)

\(=\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)

\(b,\left(x^2+1\right)^2-4x^2\)

\(=x^4+2x^2+1-4x^2\)

\(=x^4-2x^2+1\)

\(\left(x^2-1\right)^2\)

\(c\left(y^3+8\right)+\left(y^2-4\right)\)

\(=\left(y+2\right)\left(y^2-8y+4\right)+\left(y-2\right)\left(y+2\right)\)

\(=\left(y+2\right)\left(y^2-8y+4+y-2\right)\)

\(=\left(y+2\right)\left(y^2-7y+2\right)\)

17 tháng 7 2019

a) ( a3 - b3) + ( a - b)2

= (a-b) (a2 + ab + b) + (a-b)2

= (a-b) (a2 + ab + b2 +a -b ) 

hok tốt

5 tháng 7 2018

a)  \(bc\left(b+c\right)+ca\left(c-a\right)-ab\left(a+b\right)\)

\(=bc\left(b+c\right)+ca\left(c-a\right)-ab\left[\left(b+c\right)-\left(c-a\right)\right]\)

\(=bc\left(b+c\right)+ca\left(c-a\right)-ab\left(b+c\right)+ab\left(c-a\right)\)

\(=\left(b+c\right)\left(bc-ab\right)+\left(c-a\right)\left(ca+ab\right)\)

\(=\left(b+c\right)\left(c-a\right)b+\left(c-a\right)\left(b+c\right)a\)

\(=\left(b+a\right)\left(c-a\right)\left(c+b\right)\)

b)  \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)+b^2\left(c-a\right)-c^2\left[\left(b-c\right)+\left(c-a\right)\right]\)

\(=a^2\left(b-c\right)+b^2\left(c-a\right)-c^2\left(b-c\right)-c^2\left(c-a\right)\)

\(=\left(b-c\right)\left(a^2-c^2\right)+\left(c-a\right)\left(b^2-c^2\right)\)

\(=\left(b-c\right)\left(a-c\right)\left(a+c\right)+\left(c-a\right)\left(b-c\right)\left(b+c\right)\)

\(=\left(b-c\right)\left(c-a\right)\left(b+c-a-c\right)\)

\(=\left(b-a\right)\left(b-c\right)\left(c-a\right)\)

26 tháng 6 2017

c, Ta có:

\(VP=\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3\)

\(=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)

\(=\left(a+b\right)^3+c^3+3\left(a+b\right).c.\left(a+b+c\right)\)

\(=a^3+b^3+3a^2b+3ab^2+c^3+3\left(a+b\right).c.\left(a+b+c\right)\)

\(=a^3+b^3+c^3+3ab.\left(a+b\right)+3\left(a+b\right).c\left(a+b+c\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right).\left[ab+c.\left(a+b+c\right)\right]\)

\(=a^3+b^3+c^3+3\left(a+b\right).\left(ab+ac+cb+c^2\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right).\left(ab+ac\right)+\left(cb+c^2\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right).a.\left(b+c\right)+c.\left(b+c\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=VT\)

\(\rightarrow\) đpcm

Chúc bạn học tốt!!!