Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trả lời
xx^4+2015x^2+2014x+2015=x^4+2015x^2+2015x-x+2015=x\left(x^3-1\right)+2015\left(X^2+x+1\right)=x\left(x-1\right)\left(x^2+x+1\right)+2015\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2-x+2015\right)xx4+2015x2+2014x+2015=x4+2015x2+2015x−x+2015=x(x3−1)+2015(X2+x+1)=x(x−1)(x2+x+1)+2015(x2+x+1)=(x2+x+1)(x2−x+2015)
hc tốt
\(x^4+2015x^2+2014x+2015\)
\(=\left(x^4-x\right)+2015x^2+2015x+2015\)
\(=x\left(x^3-1\right)+2015\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2015\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2015\right)\)
bạn có: x^4 + 2016x^2 + 2015x + 2016
= x^4 + x^3 + x^2 - x^3 - x^2 - x + 2016x^2 + 2016x + 2016
= x^2(x^2 + x + 1) - x(x^2 + x + 1) + 2016(x^2 + x + 1)
= (x^2 + x + 1)(x^2 - x + 2016)
\(x^4+2016x^2+2015x+2016\)
=\(x^4+x^3+x^2+2015x^2+2015x+2015+1-x^3\)
=\(x^2\left(x^2+x+1\right)+2015\left(x^2+x+1\right)+\left(1-x\right)\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^2+2015+1-x\right)\)
=\(\left(x^2+x+1\right)\left(x^2-x+2016\right)\)
\(x^4+2015x^2+2014x+2015\)
\(=\left(x^4-x^3+2015x^2\right)+\left(x^3-x^2+2015x\right)+\left(x^2-x+2015\right)\)
\(=\left(x^2-x+2015\right)\left(x^2+x+1\right)\)
ta có:
x^4+2014x^2+2013x+2014 = x^4+2013x^2+x^2+2013x+2013+1
=(x^4+x^2+1)+2013(x^2+x+1)
=(x^2+1)^2-x^2+2013(x^2+x+1)
=(x^2-x+1)(x^2+x+1)+2013(x^2+x+1)
=(x^2+x+1)(x^2+x+2014)
x4+2014x2+2013x+2014=(x4-x)+(2014x2+2014x+2014)
=x(x-1)(x2+x+1)+2014(x2+x+1)
=(x^2+x+1)(x2-x+2014)
x^4+2014x^2+2013x+2014 = x^4+2013x^2+x^2+2013x+2013+1
=(x^4+x^2+1)+2013(x^2+x+1)
=(x^2+1)^2-x^2+2013(x^2+x+1)
=(x^2-x+1)(x^2+x+1)+2013(x^2+x+1)
=(x^2+x+1)(x^2+x+2014)
1.x2-9
= (x-3)(x+3)
2. -2x2+2x+12
= -2x2+6x-4x+12
= -2x(x+2)+6(x+2)
= (x+2)(-2x+6)
4. -2x2+2x+24
= -2x2+8x-6x+24
= -2x(x+3)+8(x+3)
= (x+3)(-2x+8)
6. x2-5x+4
= x2-4x-x+4
= x(x-1) -4(x-1)
= (x-1)(x-4)
8. x2-7x+6
= x2-6x-x+6
= x(x-1)-6(x-1)
= (x-1)(x-6)
9. x2+5x+4
= x2+4x+x+4
= x(x+1)+4(x+1)
=(x+1)(x+4)
10. x2+7x+6
= x2 +x+6x+6
= x(x+1)+6(x+1)
= (x+6)(x+1)
K nhé
x4+2015x2+2014x+2015
=x4-x+2015x2+2015x+2015
=x.(x3-1)+2015.(x2+x+1)
=x.(x-1)(x2+x+1)+2015.(x2+x+1)
=(x2+x+1)(x2-x+2015)
\(x^4+2015x^2+2014x+2015=\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(2015x^2+2015x+2015\right)\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2015\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2-x+2015\right)\)