Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+9x^2+26x+24=\left(x^2+7x+12\right)\left(x+2\right)=\left(x+3\right)\left(x+4\right)\left(x+2\right)\)
Ta có: \(x^3+9x^2+26x+24\)
\(=\left(x^3+2x^2\right)+\left(7x^2+14x\right)+\left(12x+24\right)\)
\(=x^2\left(x+2\right)+7x\left(x+2\right)+12\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+7x+12\right)\)
\(=\left(x+2\right)\left[\left(x^2+3x\right)+\left(4x+12\right)\right]\)
\(=\left(x+2\right)\left[x\left(x+3\right)+4\left(x+3\right)\right]\)
\(=\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(1.\) Phân tích đa thức thành nhân tử
\(4-32x^3=-\left(32x^3-4\right)=\left(-4\right)\left(8x^3-1\right)=\left(-4\right)\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(2.\) Thực hiện phép tính
Ta có: \(-x^2+6x^3-26x+21=6x^3-x^2-26x+21=\left(x-1\right)\left(2x-3\right)\left(3x+7\right)\)
Do đó:
\(\frac{-x^2+6x^3-26x+21}{2x-3}=\frac{\left(x-1\right)\left(2x-3\right)\left(3x+7\right)}{2x-3}=\left(x-1\right)\left(3x+7\right)=3x^2+4x-7\)
\(x^6-x^4-9x^3+9x^2\)
\(=x^6-x^5+x^5-x^4-9x^2\left(x-1\right)\)
\(=x^5\left(x-1\right)+x^4\left(x-1\right)-9x^2\left(x-1\right)\)
\(=\left(x-1\right)\left(x^5+x^4-9x^2\right)\)
\(x^6-x^4-9x^3+9x^2\)
\(=x^4.\left(x^2-1\right)-9x^2\left(x-1\right)\)
\(=x^4.\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
\(=\left(x-1\right)\left[x^4.\left(x+1\right)-9x^2\right]\)
x6 - x4 - 9x3 + 9x2
= x4.(x2 - 1) - 9x2.(x - 1)
= x4.(x - 1).(x + 1) - 9x2.(x - 1)
= (x - 1).(x5 + x - 9x2)
= (x - 1).x.(x4 + 1 - 9x)
x^6-x^4-9x^3+9x^2
=x^2(x^4-x^2-9x+9)
=x^2[x^2(x^2-1)-9(x-1)]
=x^2[x^2(x-1)(x+1)-9(x-1)]
=x^2(x-1)[x^2(x+1)-9)]
=x^2(x-1)(x+1)(x^2-9)
=x^2(x-1)(x+1)(x-3)(x+3)
-x3+9x2-27x+27
-x3+3x2+6x2-18x-9x+27
-x2(x-3)+6x(x-3)-9(x-3)
(-x2+6x-9)(x-3)
-(x2-6x+9)(x-3)
-(x-3)3
x3+9x2+26x+24
=(x3+7x2+12x)+(2x2+14x+24)
=x(x2+7x+12)+2(x2+7x+12)
=(x+2)(x2+7x+12)
=(x+2)(x2+4x+3x+12)
=(x+2)[x(x+4)+3(x+4)]
=(x+2)(x+3)(x+4)