K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

1. \(\left(5x-y\right)^2\)

2. \(\left(x^2-2y\right)^2\)

3. \(\left(3x^2-2y\right)^2\)

4. \(\left(9^2-2x^3\right)^2\)

31 tháng 7 2018

1/ \(25x^2-10xy+y^2=\left(5x\right)^2-2.5xy+y^2=\left(5x-y\right)^2\)

2/\(x^4-4x^2y+4y^2=\left(x^2\right)^2-2.x^2.2y+\left(2y\right)^2=\left(x^2-2y\right)^2\)

3/\(9x^4-12x^2y+4y^2=\left(3x^2\right)^2-2.3x^2.2y+4y^2=\left(3x^2-2y\right)^2\)

4/\(9x^4-12x^5+4x^6=\left(3x^2\right)^2-2.3x^2.2x^3+\left(2x^3\right)^2=\left(3x^2-2x^3\right)^2\)

16 tháng 8 2018

a) \(4x^2-12x+9=\left(2x\right)^2-2.2x.3+3^2=\left(2x-3\right)^2\)

b) \(4x^2+4x+1=\left(2x\right)^2+2.2x.1+1^2=\left(2x+1\right)^2\)

c) \(1+12x+36x^2=1^2+2.6x.1+\left(6x\right)^2=\left(1+6x\right)^2\)

d) \(9x^2-24xy+16y^2=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2=\left(3x-4y\right)^2\)

f) \(-x^2+10x-25=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\)

g) \(-16a^4b^6-24a^5b^5-9a^6b^4=-\left(16a^4b^6+24a^5b^5+9a^6b^4\right)\)

                             \(=-\left[\left(4a^2b^3\right)^2+2.4a^2b^3.3a^3b^2+\left(3a^3b^2\right)^2\right]\)

                              \(=-\left(4a^2b^3+3a^3b^2\right)^2\)

h) \(25x^2-20xy+4y^2=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\) \(=\left(5x-2y\right)^2\)

i) \(25x^4-10x^2y+y^2=\left(5x^2\right)^2-2.5x^2.y+y^2=\left(5x^2-y\right)^2\)

28 tháng 9 2018

\(4x^2+4x+1\)

\(=\left(2x\right)^2+2.2x.1+1\)

\(=\left(2x+1\right)^2\)

\(1+12x+36x^2\)

\(=1+2.6x+\left(6x\right)^2\)

\(=\left(1+6x\right)^2\)

30 tháng 10 2020

1. THực hiện phép tính

a) \(12x^2y\left(-\frac{1}{6}xy^2\right)+2x^2y^2\left(xy-2\right)\)

= \(-2x^3y^3+2x^3y^3-4x^2y^2\)

= \(-4x^2y^2\)

b) \(\left(35x^3y^3-14x^3y^4\right):\left(-7x^2y\right)\)

= \(35x^3y^3:\left(-7x^2y\right)+\left(-14x^3y^4\right):\left(-7x^2y\right)\)

= \(-5xy^2+2xy^3\)

16 tháng 9 2018

\(a,A=-x^2-6x-10=-\left(x^2+6x+9\right)-1=-\left(x+3\right)^2-1\le-1\)

Dấu = xảy ra ⇔ x +3 =0 ⇔ x = -3

\(Max_A=-1\text{ ⇔}x=-3\)

\(b,B=12x-4x^2+3=-\left(4x^2-12x+9\right)+12=-\left(2x-3\right)^2+12\le12\)

Dấu = xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

\(Max_B=12\text{ ⇔}x=\dfrac{3}{2}\)

\(c,8x-8x^2+3=-8\left(x^2-x+\dfrac{1}{4}\right)+5=-8\left(x-\dfrac{1}{2}\right)^2+5\le5\)

\(d,-x^2-8x+2018-y^2+4y\)

\(=-\left(x^2+8x+16\right)-\left(y^2-4y+4\right)+2038\le2038\)

\(e,-4x^4-12x^2+11=-\left(4x^4+12x^2+9\right)+20=-\left(2x^2+3\right)^2+20\le20\)

\(f,C=x-\dfrac{x^2}{4}\Rightarrow4C=4x-x^2\)\(=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4\)

\(\Rightarrow C=-\dfrac{\left(x-2\right)^2}{4}+1\le1\)

\(g,D=x-\dfrac{9x^2}{25}\Rightarrow25D=-\left(9x^2-25x\right)=-\left(9x^2-2.3x.\dfrac{25}{6}+\dfrac{625}{36}\right)+\dfrac{625}{36}=-\left(3x-\dfrac{25}{6}\right)^2+\dfrac{625}{36}\)

\(\Rightarrow D=\dfrac{-\left(3x-\dfrac{25}{6}\right)^2}{25}+\dfrac{25}{36}\le\dfrac{25}{36}\)

12 tháng 8 2021

7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)

8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)

9, ĐK x >= 0 

\(x-2\sqrt{x}-3=x-3\sqrt{x}+\sqrt{x}-3\)

\(=\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)

10, \(-4x^2-4x+10=-\left(4x^2+4x+1\right)+11\)

\(=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)

11;12 xem lại đề

13, \(-x^3+6xy^2-12xy^2+8y^3=-\left(x^3-6xy^2+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)

12 tháng 8 2021

Trả lời:

7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)

8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)

9, \(x-2\sqrt{x}-3\left(ĐK:x\ge0\right)\)

\(=x-3\sqrt{x}+\sqrt{x}-3=\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}-3\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)

10, \(10-4x-4x^2=-\left(4x^2+4x-10\right)=-\left(4x^2+4x+1-11\right)=-\left[\left(2x+1\right)^2-11\right]\)

\(=-\left(2x+1\right)^2+11=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)

11,sửa đề:  \(15x\left(x-3y\right)+20y\left(3y-x\right)=15x\left(x-3y\right)-20y\left(x-3y\right)=5\left(x-3y\right)\left(3x-4y\right)\)

12, \(25x^2-2=\left(5x-\sqrt{2}\right)\left(5x+\sqrt{2}\right)\)

13, sửa đề: \(-x^3+6x^2y-12xy^2+8y^3=-\left(x^3-6x^2y+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

1.

\(x^2-22x+12\) : biểu thức không phân tích được thành nhân tử nữa.

2.

\(9x^2+6x+1=(3x)^2+2.3x.1+1^2=(3x+1)^2\)

3.

\(x^2-10x+2\): không p. tích được thành nhân tử.

4.

\(x^3+1=x^3+1^3=(x+1)(x^2-x+1)\)

5.

\(8x^3-27y^3=(2x)^3-(3y)^3=(2x-3y)[(2x)^2+(2x)(3y)+(3y)^2]\)

\(=(2x-3y)(4x^2+6xy+9y^2)\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

6.

\((x+3y)^2-(3y+1)^2=[(x+3y)-(3y+1)][(x+3y)+(3y+1)]\)

\(=(x-1)(x+6y+1)\)

7.

\(4y^2-36x^2=(2y)^2-(6x)^2=(2y-6x)(2y+6x)=4(y-3x)(y+3x)\)

8.

\(27-(x+4)^3=3^3-(x+4)^3=[3-(x+4)][3^2+3(x+4)+(x+4)^2]\)

\(=-(x+1)(37+x^2+11x)\)

9.

\(25x^2-10xy+y^2=(5x)^2-2.5x.y+y^2=(5x-y)^2\)

10.

\(9x^6-12x^7+4x^8=x^6(9-12x+4x^2)=x^6[3^2-2.3.2x+(2x)^2]\)

\(=x^6(3-2x)^2\)

10 tháng 7 2019

\(A=\left(6x-3y\right)+\left(4x^2-4xy+y^2\right)\) 

  \(=3\left(2x-y\right)+\left(2x-y\right)^2\) 

  \(=\left(3+2x-y\right)\left(2x-y\right)\)

\(B=9x^2-\left(y^2-4y+4\right)\) 

   \(=9x^2-\left(y-2\right)^2\) 

   \(=\left(3x+y-2\right)\left(3x-y+2\right)\)

10 tháng 7 2019

A = ( 6x - 3y ) + (4x2 - 4xy + y2 )

A = 3.( 2x - y) + [ ( 2x )2 - 2.2.x.y + y2 ]

A = 3.( 2x - y ) + ( 2x - y )2

A = ( 2x - y ).(3 + 2x - y )

B = 9x2 - ( y2 - 4y + 4 )

B = ( 3x )2 - ( y - 2 )2

B = ( 3x - y + 2 ).( 3x + y - 2 )

C = - 25x2 + y2 - 6y + 9

C =   ( y2 - 2.3.y + 3) - ( 5x )2

C = ( y - 3 )2 - ( 5x )2

C = (y - 3 - 5x ).( y - 3 +5x )

D = x2 - 4x - y2 -- 8y  - 12

D = ( x2 - 4x + 4 ) - 4 - y2 - 8y -12

D = ( x - 2.2x + 22 ) - ( y2 + 2.4.y + 42 )

D = ( x - 2 )2 - ( y + 4 )2

D = ( x - 2 + y + 4 ).( x - 2 - y - 4 )

D = ( x + y + 2 ).( x - y - 6 )