Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(100a^2-\left(a^2+25\right)^2=\left(10a\right)^2-\left(a^2+25\right)^2\)
\(=\left(10a-a^2-25\right)\left(10a+a^2+25\right)=-\left(a-5\right)^2\left(a+5\right)^2\)
b,\(-5\left(xy\right)^3-5\left(xy\right)^3=-10\left(xy\right)^3\)
c,\(16+2\left(xy\right)^3=2\left(2+xy\right)\left(4-2xy+x^2y^2\right)\)
\(\left(a+4\right)^2-16a^2\)
\(=\left(a+4\right)^2-\left(4a\right)^2\)
\(=\left(a+4+4a\right)\left(a+4-4a\right)\)
\(=\left(5a+4\right)\left(4-3a\right)\)
\(x^3=4x\)
\(\Leftrightarrow x^3-4x=0\)
\(\Leftrightarrow x\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{4}=\pm2\end{cases}}\)
a/ \(=3y^2-6y-2x+1\)
b/ \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
c/ \(=\left(2-x\right)^3\)
d/ \(=xy^2+x^2y+3xy+x^2y+x^3+3x^2-3xy-3x^2-9x\)
\(=xy\left(y+x+3\right)+x^2\left(y+x+3\right)-3x\left(y+x+3\right)\)
\(=\left(xy+x^2-3x\right)\left(y+x+3\right)=x\left(y+x-3\right)\left(y+x+3\right)\)
e/ \(=xy-x^2+2x-y^2+xy-2y\)
\(=x\left(y-x+2\right)-y\left(y-x+2\right)=\left(x-y\right)\left(y-x+2\right)\)
a) =(2x+3y-1)2
b)=-(x-1)3
c)=-(x3-6x2+12x-8)=-(x-2)3
d)x3 + 2x2y + xy2 – 9x
= x(x2 + 2xy + y2 -9)
= x[(x2 + 2xy + y2) - 32]
= x[(x + y)2 - 32]
= x (x + y – 3)(x + y + 3)
e) 2x-2y-x2+2xy-y2=2(x-y)-(x-y)2=(x-y)(2-x+y)
Answer:
\(2x^3+4x^2y+2xy^2\)
\(= 2 x ( x ² + 2 x y + y ² )\)
\(= 2 x ( x + y ) ² \)
\( − 3 x ^4 y − 6 x ^3 y ^2 − 3 x ^2 y ^3 \)
\(=-3x^2y(x^2+2xy+y^2)\)
\(=-3x^2y(x+y)^2\)
\(4x^5y^2+8x^4y^3+4x^3y^4\)
\(=4x^3y^2.x^2+4x^3y^2.2xy+4x^3y^2.y^2\)
\(=4x^3y^2.(x^2+2xy+y^2)\)
\(=4x^3y^2.(x+y)^2\)
1.Phân tích thành nhân tử ( phương pháp nhóm nhiều hạng tử )
a. x^3 + 2x^2 - xy - 2y
\(=x^2\left(x+2\right)-y\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-y\right)\)
b. xy - 5x + 3y^2 - 15y
\(=xy+3y^2-5x-15y\)
\(=y\left(x+3y\right)-5\left(x+3y\right)\)
\(=\left(x+3y\right)\left(y-5\right)\)
c.2xy + 6x + y^2 + 3y
\(=2xy+y^2+6x+3y\)
\(=y\left(2x+y\right)+3\left(2x+y\right)\)
\(=\left(2x+y\right)\left(y+3\right)\)
a) \(x^3+2x^2-xy-2y\)
\(=\left(x^3-xy\right)+\left(2x^2-2y\right)\)
\(=x\left(x^2-y\right)+2\left(x^2-y\right)\)
\(=\left(x+2\right)\left(x^2-y\right)\)
\(=\left(x+2\right)\left(x+\sqrt{y}\right)\left(x-\sqrt{y}\right)\)
16) 2x + 2y - x2 - xy = ( 2x + 2y ) - ( x2 + xy ) = 2( x + y ) - x( x + y ) = ( x + y )( 2 - x )
17) x2 - 2x - 4y2 - 4y = ( x2 - 4y2 ) - ( 2x + 4y ) = ( x - 2y )( x + 2y ) - 2( x + 2y ) = ( x + 2y )( x - 2y - 2 )
18) x2y - x3 - 9y + 9x = ( x2y - x3 ) - ( 9y - 9x ) = x2( y - x ) - 9( y - x ) = ( y - x )( x2 - 9 ) = ( y - x )( x - 3 )( x + 3 )
19) x2( x - 1 ) + 16( 1 - x ) = x2( x - 1 ) - 16( x - 1 ) = ( x - 1 )( x2 - 16 ) = ( x - 1 )( x - 4 )( x + 4 )
20) 2x2 + 3x - 2xy - 3y = ( 2x2 - 2xy ) + ( 3x - 3y ) = 2x( x - y ) + 3( x - y ) = ( x - y )( 2x + 3 )
20, \(2x^2+3x-2xy-3y=2x\left(x-y\right)+3\left(x-y\right)=\left(2x+3\right)\left(x-y\right)\)
16, \(2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
17, \(x^2-2x-4y^2-4y=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x-2y-2\right)\left(x+2y\right)\)
18, \(x^2y-x^3-9y+9x=-x\left(x^2-9\right)+y\left(x^2-9\right)=\left(-x-y\right)\left(x^2-9\right)=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
19, \(x^2\left(x-1\right)+16\left(1-x\right)=x^2\left(x-1\right)-16\left(x-1\right)=\left(x^2-16\right)\left(x-1\right)=\left(x-4\right)\left(x+4\right)\left(x-1\right)\)
a/ \(\left(x+3y\right)\left(2x-y\right)\)
b/ \(\left(x^2+2\right)\left(x^2-2\right)\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
b/ \(x^8-16=\left(x^4+4\right)\left(x^4-4\right)\)
\(=\left[\left(x^4+4x^2+4\right)-4x^2\right]\left(x^2-2\right)\left(x^2+2\right)\)
\(=\left[\left(x^2+2\right)^2-4x^2\right]\left(x^2-2\right)\left(x^2+2\right)\)
\(=\left(x^2+2+2x\right)\left(x^2+2-2x\right)\left(x^2-2\right)\left(x^2+2\right)\)
a) 16 + 2x3y3
= 2( 8 + x3y3)
= 2[ 23 + (xy)3]
= 2 (2+xy)(4 - 2xy + x2y2)
b) 100a2 - (a2 + 25)2
= (10a)2 - (a2 +25)2
= (10a - a2 - 25)(10a + a2 +25)
= -(a2 - 2a.5 + 52)(a2 + 2a.5 + 52)
=-(a-5)2 (a+5)2
a) \(16+2x^3y^3\)
\(=2\left(8+x^3y^3\right)\)
\(=2\left(xy+2\right)\left(x^2y^2-2xy+4\right)\)
b) \(100a^2-\left(a^2+25\right)^2\)
\(=\left(10a-a^2-25\right)\left(10a+a^2+25\right)\)
\(=-\left(a-5\right)^2\left(a+5\right)^2\)