Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g) \(x^2-2xy+y^2-9\)
\(=\left(x-y\right)^2-3^2\)
\(=\left(x-y-3\right)\left(x-y+3\right)\)
h) \(5x^4-20x^2\)
\(=5x^2\left(x^2-4\right)\)
\(=5x^2\left(x-2\right)\left(x+2\right)\)
i) \(7x^2-7y^2-14x+14y\)
\(=7\left(x-y\right)\left(x+y\right)-14\left(x-y\right)\)
\(=7\left(x-y\right)\left(x+y-2\right)\)
k) \(x^2+8x+24+3x\)
\(=x^2+11x+24\)
\(=x^2+3x+8x+24\)
\(=x\left(x+3\right)+8\left(x+3\right)\)
\(=\left(x+3\right)\left(x+8\right)\)
m) \(x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
n) \(x^6-y^6\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(x^3-x^2-14x+24\)
\(=x^3-2x^2+x^2-2x-12x+24\)
\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x-12\right)\)
\(=\left(x-2\right).\left[x^2+4x-3x-12\right]\)
\(=\left(x-2\right).\left[x\left(x+4\right)-3\left(x+4\right)\right]\)
\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)
\(x^4+x^3+2x-4\)
\(=x^4-x^3+2x^3-2x^2+2x^2-2x+4x-4\)
\(=x^3\left(x-1\right)+2x^2\left(x-1\right)+2x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+2x^2+2x+4\right)\)
\(=\left(x-1\right).\left[x^2\left(x+2\right)+2\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+2\right)\)
\(8x^4-2x^3-3x^2-2x-1\)
\(=8x^4-8x^3+6x^3-6x^2+3x^2-3x+x-1\)
\(=8x^3\left(x-1\right)+6x^2\left(x-1\right)+3x\left(x-1\right)+x-1\)
\(=\left(x-1\right)\left(8x^3+6x^2+3x+1\right)\)
\(=\left(x-1\right)\left[\left(8x^3+1\right)+\left(6x^2+3x\right)\right]\)
\(=\left(x-1\right)\left[\left(2x+1\right)\left(4x^2-2x+1\right)+3x\left(2x+1\right)\right]\)
\(=\left(x-1\right)\left(2x+1\right)\left(4x^2+x+1\right)\)
\(3x^2-7x+2\)
\(=3x^2-6x-x+2\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
Chúc bạn học tốt.
mk ghi đáp án, còn lại bạn tự biến đổi
a) \(2x^3-x^2+5x+3=\left(2x+1\right)\left(x^2-x+3\right)\)
b) \(x^3+5x^2+8x+4=\left(x+1\right)\left(x+2\right)^2\)
c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
d) \(4x^4+1=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
e) \(x^4-7x^3+14x^2-7x+1=\left(x^2-4x+1\right)\left(x^2-3x+1\right)\)
mk làm chi tiết theo yêu của của người hỏi đề:
a) \(2x^3-x^2+5x+3\)
\(=\left(2x^3-2x^2+6x\right)+\left(x^2-x+3\right)\)
\(=2x\left(x^2-x+3\right)+\left(x^2-x+3\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
b) \(x^3+5x^2+8x+4\)
\(=\left(x^3+4x^2+4x\right)+\left(x^2+4x+4\right)\)
\(=x\left(x^2+4x+4\right)+\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x+2\right)^2\)
a)\(x^2-13x+36=x^2-4x-9x+36=x\left(x-4\right)-9\left(x-4\right)=\left(x-9\right)\left(x-4\right)\)
b)\(x^2+3x-18=x^2-3x+6x-18=x\left(x-3\right)+6\left(x-3\right)=\left(x+6\right)\left(x-3\right)\)
c)\(x^2-5x-24=x^2+3x-8x-24=x\left(x+3\right)-8\left(x+3\right)=\left(x-8\right)\left(x+3\right)\)
d)\(3x^2-16x+5=3x^2-x-15x+5=x\left(3x-1\right)-5\left(3x-1\right)=\left(x-5\right)\left(3x-1\right)\)
e)\(8x^2+30x+7=8x^2+28x+2x+7=4x\left(2x+7\right)+\left(2x+7\right)=\left(4x+1\right)\left(2x+7\right)\)
g)\(2x^2-7x+3=2x^2-6x-x+3=2x\left(x-3\right)-\left(x-3\right)=\left(2x-1\right)\left(x-3\right)\)
h)\(6x^2-7x+3=6x^2-9x-2x+3=3x\left(2x-3\right)-\left(2x-3\right)=\left(3x-1\right)\left(2x-3\right)\)
i)\(3x^2-14x+11=3x^2-3x-11x+11=3x\left(x-1\right)-11\left(x-1\right)=\left(3x-11\right)\left(x-1\right)\)
k)\(5x^2+8x-13=5x^2-5x+13x-13=5x\left(x-1\right)+13\left(x-1\right)=\left(5x+13\right)\left(x-1\right)\)
a ) \(x^2-13x+36=x^2-4x-9x+36=x\left(x-4\right)-9\left(x-4\right)=\left(x-9\right)\left(x-4\right)\)
b ) \(x^2+3x-18=x^2-3x+6x-18=x\left(x-3\right)+6\left(x-3\right)=\left(x+6\right)\left(x-3\right)\)
c ) \(x^2-5x-24=x^2-3x+8x-24=x\left(x-3\right)+8\left(x-3\right)=\left(x+8\right)\left(x-3\right)\)
d ) \(3x^2-16x+5=3x^2-15x-x+5=3x\left(x-5\right)-\left(x-5\right)=\left(3x-1\right)\left(x-5\right)\)
e ) \(8x^2+30x+7=8x^2+2x+28x+7=2x\left(4x+1\right)+7\left(4x+1\right)=\left(2x+7\right)\left(4x+1\right)\)
g ) \(2x^2-7x+3=2x^2-6x-x+3=2x\left(x-3\right)-\left(x-3\right)=\left(2x-1\right)\left(x-3\right)\)
h ) \(6x^2-7x-20=6x^2-15x+8x-20=3x\left(2x-5\right)+4\left(2x-5\right)=\left(3x+4\right)\left(2x-5\right)\)
i ) \(3x^2-14x+11=3x^2-3x-11x+11=3x\left(x-1\right)-11\left(x-1\right)=\left(3x-11\right)\left(x-1\right)\)
k ) \(5x^2+8x-13=5x^2-5x+13x-13=5x\left(x-1\right)+13\left(x-1\right)=\left(5x+13\right)\left(x-1\right)\)
a/ \(3x+3y-4x-4y=3\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(3-4\right)=-1\left(x+y\right)\)
b/ \(7x\left(x-y\right)-\left(y-x\right)=7x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(7x+1\right)\)
c/ \(5x\left(1-x\right)+\left(x-1\right)=5x\left(1-x\right)-\left(1-x\right)=\left(1-x\right)\left(5x-1\right)\)
d/ \(4x\left(x-y\right)+3\left(x-y\right)^2=\left(x-y\right)\left(4x+3x-3y\right)=\left(x-y\right)\left(7x-3y\right)\)
e/ \(4x\left(x-y\right)+3\left(y-x\right)^2=4x\left(x-y\right)+3\left(x-y\right)^2=\left(x-y\right)\left(4x+3x-3y\right)=\left(x-y\right)\left(7x-3y\right)\)
g/ \(x^2+8x+7=x^2+x+7x+7=x\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)
h/ \(x^2-6x-16=x^2+2x-8x-16=x\left(x+2\right)-8\left(x+2\right)=\left(x+2\right)\left(x-8\right)\)
i/ \(4x^2-8x+3=4x^2-2x-6x+3=2x\left(2x-1\right)-3\left(2x-1\right)=\left(2x-1\right)\left(2x-3\right)\)
k/ \(3x^2-11x+6=3x^2-9x-2x+6=3x\left(x-3\right)-2\left(x-3\right)=\left(x-3\right)\left(3x-2\right)\)
a, \(9x^3y^2-15x^2y^3=3x^2y^2\cdot\left(3x-5y\right)\)
b,\(25x^2-49y^2=\left(5x\right)^2-\left(7y\right)^2\)
\(=\left(5x-7y\right)\cdot\left(5x+7y\right)\)
c,\(x^2y-xy^2-7x+7y=\left(x^2y-xy^2\right)-\left(7x-7y\right)\)
\(=xy\left(x-y\right)-7\left(x-y\right)\)
,\(=\left(x-y\right)\cdot\left(xy-7\right)\)
d, \(x^2-2xy+y^2-9z^2=\left(x^2-2xy+y^2\right)-9z^2\)
\(=\left(x-y\right)^2-9z^2\)
\(=\left(x-y+3z\right)\cdot\left(x-y-3z\right)\)
f) \(x^4-5x^2+4\)
\(=x^4-x^2-4x^2+4\)
\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)
\(=\left(x^2-4\right)\left(x^2-1\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-1\right)\left(x+1\right)\)
\(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)
\(\Leftrightarrow\left(x+2\right)3x\)
Bài 1:
a, \(\left(2x+2\right)\left(2x-2\right)=4x^2-4\)
b, đề thiếu
Bài 2:
a, \(\left(x-1\right)\left(x^2+2x+4\right)=\left(x-1\right)^3\)
Thay x = -1 vào đa thức trên, ta được:
\(\left(x-1\right)^3=\left(-1-1\right)^3=-2^3=-8\)
b, \(x^2-2xy-9z^2+y^2=\left(x^2-2xy+y^2\right)-\left(3z\right)^2=\left(x-y\right)^2-\left(3z\right)^2=\left(x-y+3z\right)\left(x-y-3z\right)\)
Thay x = 6; y = -4; z = 20 vào đa thức, ta được:
\(\left(x-y+3z\right)\left(x-y-3z\right)=\left(6+4+3.20\right)\left(6+4-3.20\right)=70.\left(-50\right)=-3500\)
Bài 3:
a, \(x^3-2x^2+x=x^3-x^2-x^2+x=x^2\left(x-1\right)-x\left(x-1\right)=\left(x-1\right)\left(x^2-x\right)=x\left(x-1\right)^2\)
b, \(x+y-y^2-xy=\left(x+y\right)-x\left(y+x\right)=\left(x+y\right)\left(1-x\right)\)
1.
a)\(\left(2x+2\right)\left(2x-2\right)=4x^2-4\)
b) đề thiếu
c) đặt tính ra
2.
a)\(\left(x-1\right)\left(x^2+2x+4\right)=x^3-1\)
Giá trị của biểu thức trên tại x=-1 là:
\(\left(-1\right)^3-1=-2\)
b)\(x^2-2xy-9z^2+y^2=\left(x-y\right)^2-\left(3z\right)^2=\left(x-y+3z\right)\left(x-y-3z\right)\)
Giá trị của biểu thức trên tại x=6; y=-4 và z=20 là:
\(\left[6-\left(-4\right)+3.20\right]\left[6-\left(-4\right)-3.20\right]=\left(10+60\right)\left(10-60\right)=70.\left(-50\right)=-3500\)
3.
a)\(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
b)\(x+y-y^2-xy=x\left(1-y\right)+y\left(1-y\right)=\left(x+y\right)\left(1-y\right)\)
\(g,x^2-2xy+y^2-9z^2=\left(x-y\right)^2-\left(3z\right)^2\)\(=\left(x-y+3z\right)\left(x-y-3z\right)\)
\(h,5x^4-20x^2=5x^2\left(x^2-4\right)=5x^2\left(x-2\right)\left(x+2\right)\)
\(i,7x^2-7y^2-14x+14y=7\left(x-y\right)\left(x+y\right)-14\left(x-y\right)\)
\(=\left(x-y\right)\left(7x+7y-14\right)=7\left(x-y\right)\left(x+y-2\right)\)
\(k,x^2+8x+3x+24=x\left(x+8\right)+3\left(x+8\right)=\left(x+8\right)\left(x+3\right)\)
\(m,x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(n,x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)\)