Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x^2-(a+b)x+ab
= x^2 - ax - bx + ab
= (x^2 - ax) - (bx - ab)
= x(x-a) - b(x-a)
= (x-b)(x-a)
b)7x^3-3xyz-21x^2+9z
=
c)4x+4y-x^2(x+y)
= 4(x + y) - x^2(x+y)
= (4-x^2) (x+y)
= (2-x)(2+x)(x+y)
d) y^2+y-x^2+x
= (y^2 - x^2) + (x+y)
= (y-x)(y+x)+ (x+y)
= (y-x+1) (x+y)
e)4x^2-2x-y^2-y
= [(2x)^2 - y^2] - (2x +y)
= (2x-y)(2x+y) - (2x+y)
= (2x -y -1)(2x+y)
f)9x^2-25y^2-6x+10y
=
a) x2 - 4x + 3
= x2 - x - 3x + 3
= x(x - 1) - 3(x - 1)
= (x - 1)(x - 3)
b) x2 + 5x + 4
= x2 + x + 4x + 4
= x(x + 1) + 4(x + 1)
= (x + 1)(x + 4)
c) x2 - x - 6
= x2 + 2x - 3x - 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
x2 - 4x + 3
= x2 - x - 3x + 3
= (x2 - x) - (3x - 3)
= x(x - 1) - 3(x - 1)
= (x - 3) (x - 1)
A = 6x4 - 5x3 + 4x2 + 2x - 1
= 6x4 + 3x3 - 8x3 - 4x2 + 8x2 + 4x - 2x - 1
= 3x3. ( 2x + 1 ) - 4x2 ( 2x + 1 ) + 4x ( 2x + 1 ) - ( 2x + 1 )
= ( 2x + 1 ) ( 3x3 - 4x2 + 4x - 1 )
= ( 2x + 1 ) ( 3x3 - x2 - 3x2 + x + 3x - 1 )
= ( 2x + 1 ) [ x2 ( 3x - 1 ) - x ( 3x - 1 ) + ( 3x - 1 ) ]
= ( 2x + 1 ) ( 3x - 1 ) ( x2 - x + 1 )
B = 4x4 + 4x3 + 5x2 + 8x - 6
= 4x4 - 2x3 + 6x3 - 3x2 + 8x2 - 4x + 12x - 6
= 2x3 ( 2x - 1 ) + 3x2 ( 2x - 1 ) + 4x ( 2x - 1 ) + 6 ( 2x - 1 )
= ( 2x - 1 ) ( 2x3 + 3x2 + 4x + 6 )
= ( 2x - 1 ) [ x2 ( 2x + 3 ) + 2 ( 2x + 3 ) ]
= ( 2x - 1 ) ( 2x + 3 ) ( x2 + 2 )
C = x4 + x3 - 5x2 + x - 6
= x4 - 2x3 + 3x3 - 6x2 + x2 - 2x + 3x - 6
= x3 ( x - 2 ) + 3x2 ( x - 2 ) + x ( x - 2 ) + 3 ( x - 2 )
= ( x - 2 ) ( x3 + 3x2 + x + 3 )
= ( x - 2 ) [ x2 ( x + 3 ) + ( x + 3 ) ]
= ( x - 2 ) ( x + 3 ) ( x2 + 1 )
a) \(x^2\left(x-3\right)+27-9x=0\)
\(x^2\left(x-3\right)+9\left(3-x\right)=0\)
\(x^2\left(x-3\right)-9\left(x-3\right)=0\)
\(\left(x^2-9\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-9=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=9\\x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=3\end{cases}}\Rightarrow x=3\)
vay \(x=3\)
a) \(x^2-4x+3\)
= \(x^2-3x-x+3\)
\(=\left(x^2-3x\right)-\left(x-3\right)\)
\(=x\left(x-3\right)-\left(x-3\right)\)
\(=\left(x-1\right)\left(x-3\right)\)
a)\(x^2-4x+3=x^2-3x-x+3=x\left(x-3\right)-\left(x-3\right)=\left(x-3\right)\left(x-1\right)\)
b)\(x^2+x-6=x^2+3x-2x-6=x\left(x+3\right)-2\left(x+3\right)=\left(x-2\right)\left(x+3\right)\)
c)\(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-3\right)\left(x-2\right)\)
d)\(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
Ta có : 5x(x - 2y) + 2(2y - x)2
= 5x(x - 2y) + 2(x - 2y)2 (vì (2y - x)2 = (x - 2y)2 )
= (x - 2y)[5x + 2(x - 2y)]
= (x - 2y)(5x + 2x - 4y)
= (x - 2y)(7x - 4y)
b) 7x(y - 4)2 - (4 - y)3
= 7x(y - 4)2 - (4 - y)2(4 - y)
= 7x(y - 4)2 - (y - 4)2(4 - y)
= (y - 4)2(7x - 4 + y)
c) (4x - 8)(x2 + 6) - (4x - 8)(x + 7) + 9(8 - 4x)
= (4x - 8)(x2 + 6) - (4x - 8)(x + 7) - 9(4x - 8)
= (4x - 8)(x2 + 6 - x - 7 - 9)
= 2(x - 4)(x2 - x - 10)
\(a,3x^3-6x^2+3x\)
\(=3x\left(x^2-2x+1\right)\)
\(=3x\left(x-1\right)^2\)
\(b,16x^2y-4xy^2-4x^3\)
\(=-4x\left(x^2-4xy+4y^2-3y^2\right)\)
\(=-4x\left(x-2y+y\sqrt{3}\right)\left(x-2y-y\sqrt{3}\right)\)