Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 ) \(a\left(m+n\right)+b\left(m+n\right)\)
\(=\left(a+b\right)\left(m+n\right)\)
2 ) \(a^2\left(x+y\right)-b^2\left(x+y\right)\)
\(=\left(a^2-b^2\right)\left(x+y\right)\)
\(=\left[\left(a-b\right).\left(a+3\right)\right]\left(x+y\right)\)
3 ) \(6a^2-3a+12ab\)
\(=3a.2a-3a+3a.4b\)
\(=3a.\left(2a-1+4b\right)\)
4 ) \(2x^2y^4-2x^4y^2+6x^3y^3\)
\(=2x^2y^2.y^2-2x^2y^2.x^2+2x^2y^2.3xy\)
\(=2x^2y^2\left(y^2-x^2+3xy\right)\)
5 ) \(\left(x+y\right)^3-x\left(x+y\right)^2\)
\(=\left(x+y\right)^2.\left(x+y-x\right)\)
\(=\left(x+y\right)^2.y\)
1)a(m+n)+b(m+n)
=(a+b)(m+n)
2)a2(x+y)-b2(x+y)
=(a2-b2)(x+y)
3)6a2-3a+12ab
=3a.2a-3a.(1-4b)
=3a.(2a-1+4b)
5)(x+y)3-x(x+y)2
=(x+y)(x+y)2-x(x+y)2
=(x+y)2(x+y-x)
1, x2+3xy+2y2= x2+xy+2xy+2y2=x(x+y)+2y(x+y)=(x+2y)(x+y)
2, x(x+2)(x+3)(x+5)+9=x(x+5)(x+2)(x+3)+9=(x2+5x)(x2+5x+6)+9
Đặt x2+5x=t, ta có
t(t+6)+9=t2+6t+9=(t+3)2=(x2+5x+3)2=(x2+8)2
3, x2+2xy+y2+2x+2y-15=(x+y)2+2(x+y)-15=(x+y)2+2(x+y)+1-16=(x+y+1)2-42
= (x+y+1-4)(x+y+1+4)=(x+y-3)(x+y+5)
4, 4x4y4+1=4x4y4+4x2y2+1-4x2y2=(2x2y2+1)2-(2xy)2=(2x2y2+1-2xy)(2x2y2+1+2xy)
\(x\left(x+2\right)\left(x+3\right)\left(x+5\right)+9\)
\(=\left(x^2+5x+6\right)\left(x^2+5x\right)+9\)
Đặt \(t=x^2+5x\)ta được;
\(t\left(t+6\right)+9=t^2+6t+9\)
\(=\left(t+3\right)^2=\left(x^2+5x+3\right)^2\)
b)\(x^2+2xy+y^2+2x+2y-15\)
\(=\left(x+y+1\right)^2-4^2\)
\(=\left(x+y+1+4\right)\left(x+y+1-4\right)\)
\(=\left(x+y-3\right)\left(x+y+5\right)\)
c)\(4x^4y^4+1=\left(2x^2y^2-2xy+1\right)\left(2x^2y^2+2xy+1\right)\)
a)
(x-y+5)2-2.(x-y+5)+1
=(x-y+5-1)2
=(x-y+4)2
b)
(x2+4y2-5)2-16.(x2.y2+2xy+1)
=(x2+4y2-5)2-[4.(xy+1)]2
=(x2+4y2-5-4xy-4)(x2+4y2-5+4xy+4)
=(x2+4y2-4xy-9)(x2+4y2+4xy-1)
=[(x-2y)2-9][(x+2y)2-1]
=(x-2y-3)(x-2y+3)(x+2y-1)(x+2y+1)
=(x2+x-3x-3)((x-2y+3)(x+2y-1)(x+1)2
=[x(x+1)-3(x+1)](x-2y+3)(x+2y-1)(x+1)2
=(x+1)(x-3)(x-2y+3)(x+2y-1)(x+1)2
9(a + b)2 - (a + b) = (a + b)[9(a + b) - 1]
(mx + my) + (3x + 3y) = m(x + y) + 3(x + y) = (m + 3)(x + y)
(12xy) - 6x - (2y - 1) = 6x(2y - 1) - (2y - 1) = (6x - 1)(2y - 1)
(7xy2 - 5x2y) + (5x - 7y) = xy(7y - 5x) + (5x - 7y) = -xy(5x - 7y) + (5x - 7y) = (-xy + 1)(5x - 7y)
2x(x - y) - (4x - 4y) = 2x(x - y) - 4(x - y) = (2x - 4)(x - y)
a) 9( a + b )2 - ( a + b ) = ( a + b )[ 9( a + b ) - 1 ]
b) ( mx + my ) + ( 3x + 3y ) = m( x + y ) + 3( x + y ) = ( m + 3 )( x + y )
c) 12xy - 6x - ( 2y - 1 ) = 6x( 2y - 1 ) - ( 2y - 1 ) = ( 6x - 1 )( 2y - 1 )
d) ( 7xy2 - 5x2y ) + ( 5x - 7y ) = xy( 7y - 5x ) + ( 5x - 7y ) = -xy( 5x - 7y ) + ( 5x - 7y ) = ( -xy + 1 )( 5x - 7y )
e) 2x( x - y ) - ( 4x - 4y ) = 2x( x - y ) - 4( x - y ) = ( 2x - 4 )( x - y )
Đặt: \(x^2-6x+1=a;x^2+1=b\)
Khi đó đa thức này có dạng:
\(2a^2+5ab+2b^2=2a^2+4ab+ab+2b^2\)
\(=2a\left(a+2b\right)+b\left(a+2b\right)=\left(a+2b\right)\left(2a+b\right)\)
Thay lại a và b thì được:
\(\left(a+2b\right)\left(2a+b\right)=\left(x^2-6x+1+2x^2+2\right)\left(2x^2-12x+2+x^2+1\right)\)
\(=\left(3x^2-6x+3\right)\left(3x^2-12x+3\right)\)
\(=9\left(x-1\right)^2\left(x^2-4x+1\right)\)
Vậy ...
a)\(\left(x^2-x+2\right)^2+\left(x-2\right)^2=x^4+x^2+4-2x^3-4x+4x^2+x^2-4x+4\)
\(=x^4-2x^3+6x^2-8x+8=\left(x^4-2x^3+2x^2\right)+\left(4x^2-8x+8\right)\)
\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)=\left(x^2-2x+2\right)\left(x^2+4\right)\)
b)\(x^4+6x^3+7x^2-6x+1=\left(x^2\right)^2+\left(3x\right)^2+\left(-1\right)^2+2.x^2.3x\)+2.3x.(-1)+2.x2.(-1)
\(=\left(x^2+3x-1\right)^2\)
\(\left(xy\sqrt{6}\right)^2-\left(x^2+4y^2-1\right)^2=\left(xy\sqrt{6}+x^2+4y^2-1\right)\left(xy\sqrt{6}-x^2-4y^2+1\right)\)
Bài này ko thể giải được thành 4 nhân tử.