K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2018

\(x^3+2018x^2-2018x+2019\)

\(=\left(x^3+2019x^2\right)-\left(x^2+2019x\right)+\left(x+2019\right)\)

\(=x^2\left(x+2019\right)-x\left(x+2019\right)+\left(x+2019\right)\)

\(=\left(x+2019\right)\left(x^2-x+1\right)\)

Tham khảo nhé~

\(\text{Δ}=\left(-1\right)^2-4\cdot\left(3m-11\right)=1-12m+44=-12m+45\)

Để phương trình có hai nghiệm phân biệt thì -12m+45>0

hay m<45/12

Theo Vi-et, ta đc: \(x_1+x_2=1;x_1x_2=3m-11\)

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1+x_2=1\\2017x_1+2018x_2=2019\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=2\end{matrix}\right.\)

Ta có: \(x_1x_2=3m-11\)

=>3m-11=-2

=>m=3

23 tháng 5 2020

\(x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)+z^3-3xyz-3xy\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x^2+y^2+z^2-xy-yz-xz=0\end{cases}}\)

Mà \(x,y,z>0\Rightarrow x+y+z\ne0\)

\(\Rightarrow x^2+y^2+z^2-xy-xz-yz=0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow}x=y=z\)

Thay vào biểu thức A ta được : 

\(A=\frac{2018x-2019x+2020x}{\sqrt[3]{x^3}}=\frac{2019x}{x}=2019\)

Vậy ...

26 tháng 5 2020

đây nha bạn

3 tháng 6 2020

a. \(x^2+2018x-2019=0\)

Ta có: \(a+b+c=1+2018+\left(-2019\right)=0\)\(\)

Nên \(x_1=1,x_2=-2019\)

Vậy . . .

b. \(\left\{{}\begin{matrix}3x-y=5\\x+3y=15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-y=5\\3x+9y=45\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-10y=-40\\3x-y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=3\end{matrix}\right.\)

Vậy hệ pt có nghiệm . . . .

NV
17 tháng 5 2019

\(\Delta=2019^2-4m+4\)

\(x_1^2-x_1x_2-2018x_1x_2+2018x_2^2=0\)

\(\Leftrightarrow x_1\left(x_1-x_2\right)-2018x_2\left(x_1-x_2\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1-2018x_2\right)=0\)

TH1: \(x_1=x_2\Rightarrow\Delta=0\Rightarrow2019^2-4m+4=0\Rightarrow m=\frac{2019^2+4}{4}\)

TH2: \(x_1=2018x_2\) kết hợp Viet ta có hệ:

\(\left\{{}\begin{matrix}x_1+x_2=2019\\x_1=2018x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2018\\x_2=1\end{matrix}\right.\)

\(x_1x_2=m-1\Rightarrow m-1=2018\Rightarrow m=2019\)

20 tháng 11 2015

a) (x + 2)2 - (x - 2)2 = (x + 2 - x + 2)(x + 2 + x - 2) = 4.2x = 8x

b) (x + 1)3 + (x - 1)3 - 2

= x3 + 3x2 + 3x + 1 + x3 - 3x2 + 3x - 1 - 2

= 2x3 + 6x - 2

= 2.(x3 + 3x - 1)

10 tháng 10 2019

3x^3-3x^2-3x=1

4x^3=(x+1)^3

x=1/(căn 3 của 4) -1

21 tháng 8 2015

x3-x2-4=x3-2x2+x2-4=x2(x-2)+(x-2)(x+2)=(x-2)(x2+x+2)

10 tháng 6 2017

\(x^3-x^2-4\)

\(=x^3+x^2-2x^2-4\)

\(=\left(x^3-2x^2\right)+\left(x^2-4\right)\)

\(=x^2\left(x-2\right)+\left(x+2\right)\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+x+2\right)\)