Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 số nguyên dương đó là a;b;c
Ta có a + b + c = 20202021
Khi đó P = a3 + b3 + c3 = a3 + b3 + c3 - 3abc + 3abc
= (a + b + c)(a2 + b2 + c2 - ab - bc - ca) + 3abc
= (a + b + c)3 - 3(ab + bc + ca)(a + b + c) + 3abc
= (a + b + c)3 - 3[(ab + bc + ca)(a + b + c) - abc)
Nhận thấy a + b + c = 20202021 = (3k + 1)2021
= B(3k) + 12021 = B(3k) + 1
=> a + b + c : 3 dư 1
=> (a + b + c)3 : 3 dư 1 (1)
mà 3[(ab + bc + ca)(a + b + c) - abc) \(⋮3\) (2)
Từ (1) và (2) => P : 3 dư 1
- Vì N là số tự nhiên có hai chữ số nên đặt \(N=\overline{ab}\) \(\left(0< a\le9;0\le b\le9;a,b\in N\right)\)
Ta có \(S\left(N\right)=S\left(\overline{ab}\right)=ab\) ; \(P\left(N\right)=P\left(\overline{ab}\right)=a+b\)
Vì \(N=S\left(N\right)+P\left(N\right)\) nên \(\overline{ab}=ab+a+b\)
\(\Rightarrow10a+b=ab+a+b\)
\(\Rightarrow9a=ab\Rightarrow b=9\) (vì a khác 0)
Vậy chữ số hàng đơn vị của N là 9 ---> chọn E
gọi a là số chữ số của n.
dễ thấy S(n)>0 => n>2012 => a ≥ 4
với n=2013 thấy thỏa mãn.
với n>2013 ta có: S(n)=n(n-2014)+n+6 ≥ n+6 > n > \(10^a\) > 9a (với a ≥ 4)
\(1603^{2018}\div6\)dư 1
S chia 6 dư 1