K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

a)\(\left(x-2y-z+2t\right)\left(x-2y+z-2t\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2\)

\(=x^2-4xy+4y^2-z^2+4zt-4t^2\)

b)\(ax^2+ay^2-bx^2-by^2+b-a\)

\(=a\left(x^2+y\right)-b\left(x^2+y^2\right)-\left(a-b\right)\)

\(=\left(a-b\right)\left(x^2+y^2\right)-\left(a-b\right)\)

\(=\left(a-b\right)\left(x^2+y^2-1\right)\)

22 tháng 7 2018

\(x^2+2xy+y^2-xz-yz\)

\(=\left(x+y\right)^2-z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y-z\right)\)

mk chỉnh lại đề

\(x^2-2xy+y^2-z^2+2zt+t^2\)

\(=\left(x-y\right)^2-\left(z-t\right)^2\)

\(=\left(x-y-z+t\right)\left(x-y+z-t\right)\)

mk chỉnh lại đề:

\(ax^2+cx^2-ay+ay^2-cy+cy^2\)

\(=x^2\left(a+c\right)-y\left(a+c\right)+y^2\left(a+c\right)\)

\(=\left(a+c\right)\left(x^2-y+y^2\right)\)

\(ax^2+ay^2-bx^2-by^2+b-a\)

\(=x^2\left(a-b\right)+y^2\left(a-b\right)-\left(a-b\right)\)

\(=\left(a-b\right)\left(x^2+y^2-1\right)\)

\(ac^2-ad-bc^2+cd+bd-c^3\)

\(=a\left(c^2-d\right)-b\left(c^2-d\right)-c\left(c^2-d\right)\)

\(=\left(c^2-d\right)\left(a-b-c\right)\)

22 tháng 7 2018

trả lời giùm mình với

20 tháng 7 2018

g ) \(4x^2\left(x-2y\right)-\left(4x+1\right)\left(2y-x\right)\)

\(=4x^2\left(x-2y\right)+\left(4x+1\right)\left(x-2y\right)\)

\(=\left(4x^2+4x+1\right)\left(x-2y\right)\)

\(=\left(2x+1\right)^2\left(x-2y\right)\)

h ) \(x^2-ax^2-y+ay+cx^2-cy\)

\(=x^2\left(1-a+c\right)-y\left(1-a+c\right)\)

\(=\left(x^2-y\right)\left(1-a+c\right)\)

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)

24 tháng 9 2019

Bình phương ba vế suy ra \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Sau đó chứng minh tương tự bunhiacopxki

24 tháng 7 2017

a) Sửa đề: \(\left(ax+by+cx\right)^2+\left(bx-ay\right)^2+\left(cy-bz\right)^2+\left(az-cx\right)^2\)
= a2x2 + b2y2 + c2x2 + 2axby + 2bycz + 2axcz + b2x2 - 2bxay + a2y2 + c2y2 - 2cybz + b2z2 + a2z2 - 2azcx + c2x2
= a2x2 + b2y2 + c2x2 + b2x2 + a2y2 + c2y2 + b2z2 + a2z2 + c2x2
= a2(x2+y2+z2) + b2(x2+y2+z2) + c2(x2+y2+z2)
= (a2+b2+c2)(x2+y2+z2) (đpcm)

b) Đặt x = b; y = c; z = a, ta có:
\(\left(ay+bz+cx\right)^2+\left(az-by\right)^2+\left(bx-cz\right)^2+\left(cy-ax\right)^2\)
= a2y2 + b2z2 + c2x2 + 2aybz + 2bzcx + 2aycx + a2z2 - 2azby + b2y2 + b2x2 - 2bxcz + c2z2 + c2y2 - 2cyax + a2x2
= a2y2 + b2z2 + c2x2 + a2z2 + b2y2 + b2x2 + c2z2 + c2y2 + a2x2
= (a2+b2+c2)(x2+y2+z2)
Thay b = x, c = y, a = z, ta có:
(a2+b2+c2)(x2+y2+z2) = (a2+b2+c2)2 (đpcm)

25 tháng 7 2017

thanks

1 tháng 8 2019

\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)

\(\Rightarrow\frac{acy-bcx}{c^2}=\frac{bcx-abz}{b^2}=\frac{abz-acy}{a^2}=\frac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow\hept{\begin{cases}ay-bx=0\\cx-az=0\\bz-cy=0\end{cases}}\)

\(\Rightarrow\left(ay-bx\right)^2+\left(cx-az\right)^2+\left(bz-ay\right)^2=0\)

\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz\)

\(+c^2y^2=0\)

\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)

\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

4 tháng 2 2017

lần lượt nhân c,b,a vào tỉ số đầu rồi rút gọn đc ay-bx=cx-az=bz-cy => x/a=y/b=z/c(1)

Theo bđt bunhi thì dấu "=" xảy ra khi x/a=y/b=z/c ,tức là (1) đúng